每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。
人教版小学六年级数学下册知识点
圆柱和圆锥
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。
5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。
7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。
8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。
进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
9.圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10.从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)
11.把圆锥的侧面展开得到一个扇形。
12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。
13.常见的圆柱圆锥解决问题:
①压路机压过路面面积(求侧面积);
②压路机压过路面长度(求底面周长);
③水桶铁皮(求侧面积和一个底面积);
④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
小学6年级 毕业 考试数学重难知识点
比和比例
比:
两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。
比值:
比的前项除以后项的商,叫做比值。
比的性质:
比的前项和后项同时乘以或除以相同的数(零除外),比值不变。
比例:
表示两个比相等的式子叫做比例。a:b=c:d或
比例的性质:
小学六年级 数学学习方法
小学数学学习必须关注孩子创新意识的培养和创新能力的发展。从某种意义上讲,养成创造性学习的习惯,比获得了多少知识更重要。这需要从以下几方面做起:
1.培养学生善于质疑的习惯。
在参与、经历数学知识发现、形成的探究活动中,善于发现,提出有针对性、有价值的数学问题,质疑问难,是创造性学习习惯培养的一个重要方面。在数学学习过程中,要逐步培养学生自主探究、积极思考、主动质疑的学习习惯,让他们想问、敢问、好问、会问。
质疑习惯的培养,也可从模仿开始,老师要注意质疑的“言传身教”,教给学生可以在哪儿找疑点。一般来说,质疑可以发生在新旧知识的衔接处、学习过程的困惑处、法则规律的结论处、教学内容的重难点及关键点处,概念的形成过程中、解题思路的分析过程中、动手操作的实践中;还要让学生学会变换角度,提出问题。
2.培养学生手脑结合,注重实践的习惯。
心理学研究告诉我们,小学生的思维正处在具体形象思维向 抽象思维 、 逻辑思维 发展的过渡阶段,特别是低年级 儿童 ,他们的思维仍以具体形象思维为主要形式,他们的抽象思维需要在感性材料的支持下才能进行,因此小学数学 教育 必须重视培养学生动手、动脑、动口的良好习惯,使学生通过看一看、摸一摸、拼一拼、摆一摆、讲一讲来获取新知。
例如在学习“角的初步认识”时,角的大小与两边的长短有没有联系?这个问题就可以通过操作自制的活动角,边操作、边观察、边讨论,从而得出正确的结论。开展类似的教学活动,就能使学生养成手脑结合,勤于实践的学习习惯。
3.培养学生的良好思维习惯。
培养学生多角度思考和解决问题的习惯,培养他们思维的多向性和灵活性。通过“你能想出不同的方法吗?”“你还能想到什么?”“你有独特的见解吗?”你能从另一个角度看问题吗?“等言语,启发和诱导,鼓励学生敢想、敢说,不怕出错、敢于发表不同的见解,培养学生的 创新思维 习惯。
两个外项积等于两个内项积(交叉相乘),ad=bc。
正比例:
若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。
反比例:
若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。
比例尺:
图上距离与实际距离的比叫做比例尺。
按比例分配:
把几个数按一定比例分成几份,叫按比例分配。
六年级数学的知识点 总结 相关 文章 :
★ 六年级数学期末复习知识点汇总
★ 小学六年级数学知识点总结
★ 六年级数学上册知识点总结
★ 六年级数学圆的知识点总结
★ 六年级数学知识点归纳
★ 六年级数学的重难点知识总结
★ 六年级数学知识点总结
★ 六年级上册数学知识点整理归纳
★ 六年级上册数学知识点总结
★ 六年级数学知识点梳理
学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。
小学六年级数学总复习知识点:数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
六年级数学知识点:图形计算公式
1、正方形 (C:周长 S:面积 a:边长)
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长)
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
数学 学习 方法 技巧
一、明确教学目标,制订复习计划
小学 毕业 班数学总复习知识容量多、时间跨度大,所学知识的遗忘率高,复习之前教师必须再次钻研教材,进一步了解教材的知识内容和编排特点,还要重新学习《数学课程标准》,把握好教学要点和数学知识重点,并对学生掌握知识的情况全面摸底,然后确定复习目标,制定复习计划,主要包括:复习的内容要点,分几节课完成,设计好每节课的内容和目标。例如,制订“数的运算”这一单元复习计划:第一节复习四则运算计算方法及其关系,第二节复习运算定律,第三节复习整数小数分数四则混合运算。这样才能使复习工作有计划、有步骤地进行,这种逻辑递进的 复习方法 可以从根本上克服复习的盲目性、随意性还有简单地以教材上的复习题为内容,让学生照书做完了事的思想。
二、了解学情,制定复习方法
俗话说:“知己知彼,百战不殆”。这句话虽是用于指挥行军打仗,但细斟此言,笔者认为它同样适用于指导教学。作为一名有 经验 的教师,首先要掌握学生一举一动,一言一行,及时对教学工作作出调整,以减少无效劳动,确保教学活动不偏离预定的教学目标。了解学情的途径很多,诸如“教学观察”、“师生谈心法”、“开展第二课堂法”等等,老师可在教学实践中,多留心观察,多 总结 经验,多开动脑筋,把多种的方法灵活运用,以期达到对学生的行为,思想情感,学习情况等做到心中有数,从而进行有的放矢的教学工作,提高课堂教学质量。
三、梳理知识,形成知识网络
小学毕业生通过六年的数学学习,大多都掌握了比较可观的知识点,如果没有一个清晰的思路来帮助学生,就好比是一堆货物,品种繁多,堆放零乱,要想记住特别困难。只有加以整理,有序分类,才能清清楚楚,一目了然。因此,在复习时应根据知识的重点、学习的难点和学生的薄弱环节,引导学生把已经学的知识进行梳理、分类、整合,弄清它们的来龙去脉,沟通其纵横联系,从整体上把握知识结构。引导学生自主整理,促进知识系统化的目的不仅要构建完整的知识网络,还要在构建知识网络的的同时,使学生对以前所学的知识有新的认识、提高。同时,要重视在复习整理过程中培养学生自主整理的意识,发展学生自主学习的能力。复习时,引导学生将知识分块,系统整理,按块复习,一块一块复习记忆。如果再将每一小类找出共性,规律,记忆效果就会大大加强。将知识分成大类,以表格形式呈现,细化到每一个知识点,逐一复习,巩固强化达到熟练,运用时,从块状知识记忆中调用,速度也可加快。例如空间与图形部分,笔者给学生搭建了这样的框架:点、线、面、体。点有:端点、顶点、起点、垂足等;线有直线、射线、线段等;面有长方形、正方形、三角形、平行四边形、梯形、圆等;体有长方体、正方体、圆柱、圆锥等。每一点知识都有其自身意义和特点,通过这样的逻辑顺利建构了一种复合学生思维规律的知识脉络,点是构成线的基础,点可以连成线,线可构成面,面可围成体,垂线实际就是面和体的高等等。这些知识即单独存在,也相互联系,形成一个体系,易于学生系统掌握。
六年级数学基础知识点总结相关 文章 :
★ 六年级数学期末复习知识点汇总
★ 小学六年级数学知识点总结
★ 小学六年级数学学习方法和技巧大全
★ 六年级上册数学知识点整理归纳
★ 六年级数学上册知识点总结
★ 六年级数学几何的初步知识知识点总结
★ 六年级上册数学知识点总结
★ 六年级数学上册知识点复习
★ 小学数学基础知识点整理
★ 六年级数学的重难点知识总结
六年级数学必备知识
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?
2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、 乘法中比较大小的规律
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)
1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。
2、找单位“1”: 单位“1” 在分率句中分率的前面;
或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:
(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ”
(2)分率前是“的”字:用单位“1”的量×分率=具体量
例如:甲数是20,甲数的1/3是多少?列式是:20×1/3
4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:
(比少):单位“1”的量×(1-分率)=具体量;
例如:甲数是50,乙数比甲数少1/2,乙数是多少?
列式是:50×(1-1/2)
(比多):单位“1”的量×(1+分率)=具体量
例如:小红有30元钱,小明比小红多3/5,小红有多少钱?
列式是:50×(1+3/5)
3、求一个数的几倍是多少:用 一个数×几倍;
4、求一个数的几分之几是多少: 用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数
6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
六年级数学知识重点
三角形的面积=底×高÷2。公式 S= a×h÷2
正方形的面积=边长×边长公式 S= a×a
长方形的面积=长×宽公式 S= a×b
平行四边形的面积=底×高公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=六年级数学知识点
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
六年级数学常考知识点
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的'式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。