二年级数学第一单元思维导图如下图所示:
1、使用最简单的语言确定要绘制的数学主题,以“角度测量”为例。
2、角度是由从一个点引出的两条光线组成的图形,所以从光线开始。
3、由射线引出线段和直线,比较三者之间的异同。
4、在思维导图上标出重点知识点的角度。全部完成了。
初二数学15章上册思维树怎么画
还没抓到期末复习的重点吗?这是一份十分适合作为期末复习时的提纲的思维导图,我将它分为7部分重点知识,分别是勾股定理、实数、位置与坐标、二元一次方程组 、一次函数、平行线证明、数据的分析,跟着这份思维导图复习重点知识,轻轻松松拿高分!
图片来自亿图脑图MindMaster导图社区
数学八年级上册一些章节思维导图:
三角形的有关证明可分为以下几类:全等三角形;等腰三角形;直角三角形;线段垂直平分线; 角平分线。下面这张思维导图对三角形的有关证明做了详细归纳总结。
图片来自亿图脑图MindMaste下图是初中数学一次函数基础知识学习笔记思维导图。一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。一次函数及其图象是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。
图片来自亿图脑图MindMaster导图社区
利用思维导图做好数学的预习和复习环节,掌握典型题型,平时好好听讲,多多刷题,学会“举一反三”,学习数学也能变成意见轻松愉快的事。如果想再找一些现成的数学知识点思维导图,也可以在亿图脑图MindMaster导图社区去搜索一下,有很多干货,希望大家都能学好数学!
八年级数学上册第一二章知识点整理
4、已知P,Q均为质数,切满足5P2 +3Q=59.则以P+3,1-P+Q,2P+Q-4为边长的三角形是什么三角形?
5、如图,△ABC中三条角平分线交于点O,已知AB<BC<CA,求证:OC>OA>OB。
6、将长为2n(n为自然数且n≥4)的一根铅丝折成各边的长均为整数的三角形,记(a,b,c)为三边长分别是a,b,c且满足a<b<c的一个三角形,就n=6的情况,分别写出所有满足题意的(a,b,c)所构成的三角形是什么三角形?
7、如图,RT△ABC中,D是AC中点,DE⊥AB与E,求证:BE2-AE2=BC2
实数
一、思维导图
1.无理数定义:无限不循环小数
2.实数的分类:分为有理数和无理数。有理数分为:正有理数、负有理数、零
3.算术平方根:若一个正数x的平方等于a,即x=a,则这个正数x为a的算术平方根。a的算术平方根记作 ,读作“根号a”,a叫做被开方数。规定:0的算术平方根为0。
4.平方根:如果一个数x的平方等于a,即x=a,那么这个数x就叫做a的平方根。
5.二次根式的定义:一般形如(a≥0)的代数式叫做二次根式,其中,a 叫做被开方数,被开方数必须大于或等于0。
6.最简二次根式满足:①.分母中不含根号=根号下没有分母=根号下没有分数
②.根号下不含可以开得尽方的数
7.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
8. ( ) 2=a (a≥0) =a(a≥0)
①二次根式的乘法法则: × (a≥0,b≥0)
两个二次根式相乘,把被开方数相乘,根指数不变.
②积的.算术平方根的性质: (a≥0,b≥0)
两个非负数的积的算术平方根,等于这两个因数的算术平方根的乘积.
③二次根式的除法法则: = (a≥0,b>0)
两个二次根式相除,把被开方数相除,根指数不变.
④商的算术平方根的性质: = (a≥0,b>0)
二、易错题
1.已知:= x- +2 ,求 - .
解:∵x-2≥0, 2-x≥0
∴x=2, = ×2-0+0=1
将x=2,=1代入所求式,得
原式= =3-3=0
2、下列说法:①只有正数才有平方根;②-2是4的平方根;③5的平方根是 ;④± 都是3的平方根;⑤ 的平方根是-2,其中正确的是( )
A.①②③ B.③④⑤ C.③④ D.②④
解:错误原因①:0的平方根为0
③:5的平方根为±
⑤: 的平方根是2(任何非负数的平方根为非负数)
故选D
3、若 与 互为相反数,求 的值.
解:∵ ≥0, ≥0.
又∵ 、 互为相反数
∴ = =0
即 a-b+2=0 b=
a+b-1=0 解得 a=-
代入原式,得
原式= = =-2
答:所求式的值为-2
4、已知0
解:原式可化为
∵01
∴x-0
∴原式=x+ +x- =2x
5、先化简,再求值. - ,其中x=4,=27.
解:原式=6
=-
6、已知,2+1的平方根是±3, 的算数平方根是2,求+2n的平方根.
解:由题意,得
2+1=
=
解得,=4,n=18
∴+2n=40
故+2n的平方根为 .
7、使 + 有意义的x的取值范围是( )
A.x≥0 B.x≠2 C.x2 D.x≥0且x≠2
解:使 有意义的x的取值范围是x≥0,
使 有意义的x的取值范围是x-2≠0,x-20.
综上,使 + 有意义的x的取值范围是x2.
8、 已知 ,且 ,求x+的值.
解:∵ ≥0, ≥0
又∵
∴ =2, =1
又∵ ,即x-≤0
∴ 或 .
∴x+=-1或2
9、 下列各式计算正确的是( )
A、
B、
C、
D、 (x0,≥0)
解:错因:A.应为 B.应为 C.应为 故选D
10、 是否存在正整数a、b(a
解:存在.
,因为只有同类二次根式才能合并,所以 是同类二次根式.
设
所以+n=6,又a ,b ,a
解得
=
即
=
可得 .
三、思考题
1. 设x、为正有理数, , 为无理数,求证: + 为无理数。
2. 设x,及 + 为整数,证明: , 为整数。
3. 若实数x,满足3 +5︱︱=7,求S=2 -3︱︱的取值范围。
4. 有下列三个命题:
(甲) 若a,b是不相等的无理数,则ab+a-b是无理数。
(乙) 若a,b是不相等的无理数,则 是无理数。
(丙) 若a,b是不相等的无理数,则 + 是无理数。
其中正确命题的个数为( )
(A)0 (B)1 (C)2 (D)3
5.2 =
6.计算
7.计算
8.已知整数x,满足 ,那么整数对(x,)的个数是
9.已知a,b,c为正整数,且 为有理数,证明: 为整数。
10.已知实数x,满足( ,求证:x+=0。
对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。
数学知识点 八年级
抽样调查
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。
课后练习
1.抽样成数是一个(A)
A.结构相对数B.比例相对数C.比较相对数D.强度相对数
2.成数和成数方差的关系是(C)
A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大
C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大
3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)
A.全面调查B.非全面调查C.一次性调查D.经常性调查
4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)
A.甲产品大B.乙产品大C.相等D.无法判断
初二数学知识点归纳
四边形性质探索
定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
平行四边形:两组对边分别平行的四边形.。对边相等,对角相等,对角线互相平分。两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形
菱形:一组邻边相等的平行四边形??(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。
矩形:有一个内角是直角的平行四边形??(平行四边形的性质)。对角线相等,四个角都是直角。有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。
正方形:一组邻边相等的矩形。正方形具有平行四边形、菱形、矩形的一切性质。一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。
梯形:一组对边平行而另一组对边不平行的四边形。一组对边平行而另一组对边不平行的四边形是梯形。等腰梯形:两条腰相等的梯形。同一底上的两个内角相等,对角线相等。两腰相等的梯形是等腰梯形,同一底上两个内角相等的梯形是等腰梯形。
直角梯形:一条腰和底垂直的梯形。一条腰和底垂直的梯形是直角梯形。
多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)×180
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。
定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
八年级数学 知识点归纳
1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。例1、1、在同一平面内两条直线的位置关系为(相交)和(平行)。2、两条直线相交成直角时,就说这两条直线互相垂直,其…
平行四边形矩形菱形正方形梯形等腰梯形图形两组对边分别平行的四边形。定义用“”表示平行四边形,例如:ABCD,平行四边形ABCD记作有一个角是直角的平有一组邻边相等的平行四边形是菱形有一组邻边相等且…
第十八章平行四边形的认识知识点回顾:平行四边形、特殊平行四边形的特征以及彼此之间的关系1.矩形是特殊的平行四边形,矩形的四个内角都是_____。矩形的对角线___2.菱形是特殊的平行四边形,菱形是四条边都__,它的两条对角线__每条对角线平…
特殊的平行四边形和一元二次方程的知识点归纳
【菱形】
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2.菱形的性质:
(1)菱形的性质有:①平行四边形的一切性质;②四条边都相等;③对角线互相垂直,并且每一条对角线平分一组对角;④菱形是对称轴图形,它有2条对称轴,分别为它的两条对角线所在的直线。
(2)菱形面积=底×高=对角线乘积的一半。
3.菱形的判定:
(1)用定义判定(即一组邻边相等的平行四边形是菱形)。
(2)对角线互相垂直的平行四边形是菱形。
(3)四条边都相等的四边形是菱形。
综上可知,判定菱形时常用的思路:
四条边都相等菱形
菱形四边形
平行
四边形有一组邻边相等菱形
【矩形】
1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
2.矩形的性质:(1)具有平行四边形的一切性质;(2)矩形的四个角都是直角;
(3)矩形的四个角都相等。
4.矩形的判定 方法 :
(1)用定义判定(即有一个角是直角的平行四边形是矩形);
(2)三个角都是直角的四边形是矩形;
(3)对角线相等的平行四边形是矩形。
综上可知,判定矩形时常用的思路:
华师版初二数学上册知识点相关 文章 :
★ 八年级上册华师版数学思维导图
★ 武汉江汉区及高兴区小学升初中对口划片表
★ 华师大版八年级上册数学期末试卷及答案
★ 九年级数学教学工作计划
★ 这些还在火爆的专业你都知道吗?