如刚学一个知识点,将该知识点的条件和结论搞清,旁边附注一条例题,说明该知识点如何使用,最后应注明该知识点通常解决什么问题以及使用该知识点时容易出现的错误。根据自己的习惯用不同的色笔标注。
数学是中小学教育必不可少的基础学科,对发展学生智力,培养学生能力,特别是在培养人的思维方面,具有其它任何一门学科都无法替代的特殊功能。课程改革,对传统的教学产生了巨大的冲击波。一言堂变成了群言堂,多了动感、生气与活力,学生在课堂上能畅所欲言,发表自己的独到见解,学生的思维可以充分得到放飞,能力可以充分得到培养。作为学习活动的组织者、引导者、合作者的教师,怎样让新课标理念指导自己的教学呢,本人在学习新课标和教学实践中有以下几点尝试。一、要激发学生学习数学兴趣。兴趣是提高学生自觉性和积极性的直接因素。爱因斯坦曾经说过:兴趣是最好的老师。兴趣是人对客观事物产生的一种积极的认识倾向,它推动人去探索新的知识,发展新的能力,学生如果对数学有浓厚的兴趣,就会产生强烈的求知欲望,表现出对数学学习的一种特殊情感,学习起来乐此不疲,这就是所谓的乐学之下无负担。那么如何激发学生的学习兴趣呢?首先、创设情境,点燃学生学习兴趣的火花。俗话说:良好的开端是成功的一半,一堂课起始阶段的成功与否,在很大程度上关系到这堂课的成败。教师要根据教材内容和学生心理及年龄特征,上课一开始就给学生创设情境,将学生带入情境之中,使之产生好奇心和求知欲,使学生进入最佳学习状态。其次、把空间留给学生,激发兴趣。活动教学的理念作为新课程标准大力倡导的教学原则,已经走进了中学数学课堂,让学生自行探究、研讨是体现主体性教学思想的最佳教学模式。教师要充分利用数学活动课的优势,对学生及时进行学习兴趣、学习动机的引导和强化。使学生在成功后有了学习兴趣,在失败时能更加明确学习目标,强化学习动机。二、培养学生自主学习的能力。当今世界科学技术日新月异,知识的更新以几何级数激增。这些知识、技术仅靠课堂或老师的传授显然是远远不够的。这就需要学生有较强的自学能力。知识可能被遗忘,但能力却伴随你终身。如果一个学生有较强的自学能力,就可以扩大知识面,并增强自身的技术和技能。。数学学科所具有的思考性、知识的发散性和思想的延伸性,要求学生必须充分利用自学这种学习方法。但自学是一种高层次的学习能力,它不是人与生俱来的,需要教师后天的培养和学生自身的努自学是一种自主、探究、发散式的学习方法,它会使学生更能掌握和理解数学的真谛。教师在培养学生自学数学能力时,一方面要对学生说明进行自学数学的意义,另一方面要让学生在数学学习中,获得成功的体验,以增强自学数学的兴趣。所以我们对学生自我探究式的自学一定要高度重视,并进行行之有效的训练。通过几年的教学实践,我深深体会到,指导学生自学是学生自主发展的重要环节,又是个循序渐进的漫长过程,只有在平时课中坚持这种能力的培养,使学生的学习获得事半功倍的学习效果。三、让数学教学生活化。《数学课程标准》中指出:学生能够认识到数学存在于现实生活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。。同时,新课程标准中还多次强调:教学中,应注重所学内容与现实生活的密切联系,并对此做了具体细致的阐述。那么,教学活动中我们如何让生活走进数学,让数学服务于生活呢?第一、感受数学,数学问题生活化。 生活本身就是一个巨大的数学课堂,生活数学课堂中,再现了数学知识与生活的紧密联系,使数学教学更具活力。新的课程标准地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象。在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系数学无处不在,生活处处有数学。从而充分调动学生学习数学知识的积极性,激发学生的探索欲望。第二、探究生活问题,让生活数学化,体现数学知识的生活回归。我们的数学教学除了让学生从生活中抽象出数学知识,还应将数学知识运用于生活中,并学会运用数学的思维去解决生活中实际的问题,增强应用数学的意识。因此,教师在教学中要善于捕捉生活情景,让学生有综合运用知识解决实际问题的真实体验,从而体现了数学学习的价值。这就是数学的魅力。新时代的进步,促进着教育的新形势,作为新时代的教学同样也要求教师能善于利用新课标。课程改革的核心环节是课程实施,而课程实施的基本途径是课堂教学。只有教师真正改变多年来习以为常的教学方式,工作方式,才能稳健地推进课程改革。教师只有不断学习先进的教育教学理论,不断反思自己的课堂教学,才能真正走进新课程。
北师大版初中数学定理知识点汇总八年级(上册) 第一章 勾股定理 ※直角三角形两直角边的平和等于斜边的平方。即: (由直角三角形得到边的关系) 如果三角形的三边长a,b,c满足 ,那么这个三角形是直角三角形。 满足条件 的三个正整数,称为勾股数。常见的勾股数组有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数) 第二章 实数 ※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。 ※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。 ※正数有两个平方根(一正一负);0只有一个平方根,就是它本身;负数没有平方根。 ※正数的立方根是正数;0的立方根是0;负数的立方根是负数。
第三章 图形的平移与旋转 平移:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移。 平移的基本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。 旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。 这个定点叫旋转中心,转动的角度叫旋转角。 旋转的性质:旋转后的图形与原图形的大小和形状相同; 旋转前后两个图形的对应点到旋转中心的距离相等; 对应点到旋转中心的连线所成的角度彼此相等。 (例:如图所示,点D、E、F分别为点A、B、C的对应点,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。) 第四章 四平边形性质探索 ※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。 ※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。 两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。 ※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。 菱形的定义:一组邻边相等的平行四边形叫做菱形。 ※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 菱形是轴对称图形,每条对角线所在的直线都是对称轴。 ※菱形的判别方法:一组邻边相等的平行四边形是菱形。 对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。 ※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 ※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) ※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。 对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。 ※推论:直角三角形斜边上的中线等于斜边的一半。 正方形的定义:一组邻边相等的矩形叫做正方形。 ※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴) ※正方形常用的判定: 有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。 正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。 ※两条腰相等的梯形叫做等腰梯形。 ※一条腰和底垂直的梯形叫做直角梯形。 ※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。 同一底上的两个内角相等的梯形是等腰梯形。 ※多边形内角和:n边形的内角和等于(n-2)·180° ※多边形的外角和都等于360° ※在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。 ※中心对称图形上的每一对对应点所连成的线段被对称中心平分。 第五章 位置的确定 ※平面直角坐标系概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点。 ※点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b分别叫P点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标。 ※在直角坐标系中如何根据点的坐标,找出这个点(如图4所示),方法是由P(a、b),在x轴上找到坐标为a的点A,过A作x轴的垂线,再在y轴上找到坐标为b的点B,过B作y轴的垂线,两垂线的交点即为所找的P点。 ※如何根据已知条件建立适当的直角坐标系? 根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:①以某已知点为原点,使它坐标为(0,0);②以图形中某线段所在直线为x轴(或y轴);③以已知线段中点为原点;④以两直线交点为原点;⑤利用图形的轴对称性以对称轴为y轴等。 ※图形“纵横向伸缩”的变化规律: A、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:①当n1时,伸长为原来的n倍;②当0n1时,压缩为原来的n倍。 B、将图形上各个点的坐标的横坐标不变,而纵坐标分别变成原来的n倍时,所得的图形比原来的图形在纵向:①当n1时, 伸长为原来的n倍;②当0n1时,压缩为原来的n倍。 ※图形“纵横向位置”的变化规律: A、将图形上各个点的坐标的纵坐标不变,而横坐标分别加上a,所得的图形形状、大小不变,而位置向右(a0)或向左(a0)平移了|a|个单位。 B、将图形上各个点的坐标的横坐标不变,而纵坐标分别加上b,所得的图形形状、大小不变,而位置向上(b0)或向下(b0)平移了|b|个单位。 ※图形“倒转与对称”的变化规律: A、将图形上各个点的横坐标不变,纵坐标分别乘以-1,所得的图形与原来的图形关于x轴对称。 B、将图形上各个点的纵坐标不变,横坐标分别乘以-1,所得的图形与原来的图形关于y轴对称。 ※图形“扩大与缩小”的变化规律: 将图形上各个点的纵、横坐标分别变原来的n倍(n0),所得的图形与原图形相比,形状不变;①当n1时,对应线段大小扩大到原来的n倍;②当0n1时,对应线段大小缩小到原来的n倍。
第六章 一次函数 若两个变量x,y间的关系式可以表示成y=kx b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
※正比例函数y=kx的图象是经过原点(0,0)的一条直线。 ※在一次函数y=kx b中: 当k0时,y随x的增大而增大; 当k0时,y随x的增大而减小。
第七章 二元一次方程组 ※含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 两个一次方程所组成的一组方程叫做二元一次方程组。 ※解二元一次方程组:①代入消元法; ②加减消元法(无论是代入消元法还是加减消元法,其目的都是将“二元一次方程”变为“一元一次方程”,所谓之“消元”) ※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x或y;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。 ※处理问题的过程可以进一步概括为:
第八章 数据的代表 ※加权平均数:一组数据 的权分加为 ,则称 为这n个数的加权平均数。 (如:对某同学的数学、语文、科学三科的考查,成绩分别为72,50,88,而三项成绩的“权”分别为4、3、1,则加权平均数为: ) ※一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。 ※一组数据中出现次数最多的那个数据叫做这组数据的众数。 ※众数着眼于对各数据出现次数的考察,中位数首先要将数据按大小顺序排列,而且要注意当数据个数为奇数时,中间的那个数据就是中位数;当数据个数为偶数时,居于中间的两个数据的平均数才是中位数,特别要注意一组数据的平均数和中位数是唯一的,但众数则不一定是唯一的。
32开的较厚本子。初中数学笔记需要32开的较厚本子。初级中学简称初中(juniorhighschool)。初中是中学阶段的初级阶段,初级中学是指九年义务教育的中学,是向高级中学过渡的一个阶段。
在初中课堂上,最忙活的可不是讲台上的老师,而应该是坐在下面听课的同学们!下面我来介绍一下学霸是怎样去做好笔记的。
学霸做笔记的 方法
第一:要听课,听明白老师讲的知识点;
第二:要与老师有互动,对老师抛出的问题要比哈士奇接的还快还准,保持思路紧紧跟随老师;
第三:要捡掉在地上的笔帽,要不然下课就找不着了……这个很重要哦~;
第四,就是要记笔记,把课上讲的知识点,例题,清楚明白地记下来,以作后用!!!记笔记,记笔记,记笔记,重要的事情说三遍!!!
能顺利走进初中的孩子,相信前三点都一定做得非常好了,但是第四点在初中的学习生活里尤为重要,有时候简直比做题还重要!
1.好记性不如烂笔头
这个道理我当年刚上初中的时候就被老师们灌输,而且大量事实证明,确实如此。研究表明,听课后马上测试,学生一般能记住10分钟讲课内容的一半,如果48小时后测试,则只能记住其中的20%。而且,初中数学跟小学相比,教授的知识点多,概念多,定义多,性质多,定理多,题型多,每一堂课下来任务量都不小,再好的记性也难以招架那加量不加价的知识点。而且,有的时候明明课上听的很明白,很透彻,但是过几天再复习这个知识点,恍如隔世,很是苦恼。所以,记笔记,记笔记,记笔记!
2.有效防止上课溜号
老师们上课的时候除了滔滔不绝地讲和分析,也是要随时写板书的,那么在老师转身面向黑板的一刹那,我相信,这是一个同学们极其容易溜号的时候,即使没溜号,在那干瞪眼看老师写是不是也没有很好地利用课堂时间呢?那么,如果这个时候能够跟随老师一起记笔记,既能在课堂上就把知识点写一遍加深了记忆,同时也防止了活跃的思维溜出课堂,课堂效率想不高都难!所以,记笔记*3。
3.专属你的学习资料
市面上教辅资料奇多,内容全面又权威,还分分钟后面跟着各种类型题、中考题,印刷字体整洁又漂亮,简直可以直接拿来当笔记了。可是这样真的好吗?教辅上的知识点太客观,而且太泛泛,有悖个性化学习呀。不造大家有木有过这种 经验 :自己写的东西自己懂,别人写的看不懂。
要知道,记笔记的不光是老师写在黑板上的东西,最关键的就是记自己最薄弱的环节,哪一种题型不太会,就在笔记上重点记,然后多配几道类型题;哪一个知识点自己有新的见解,就在旁边彩色笔着重分析一下,神不知鬼不觉地这个知识点就刻进脑子里了。到复习的时候,一本笔记看得比几页教辅还快,知识点回忆的也透彻,复习效率事半功倍。
“洗脑”完了记笔记的重!要!性!下面,让我们手牵起手肩并着肩,一起迈入记好笔记的大宅门儿!
A. 大笔记:
请为除体育课之外的每门课准备一本厚度不低于1CM的大 笔记本 (跟A4纸差不多大的那种),纸质不要太柔软和纤薄,装订也要结实,要经得起翻阅,因为它们要跟随你三年!方法君当年记数学笔记就是左一本右一本,初三复习的时候以前记的笔记都找不着了,特别惨,高中才吸取教训。至少四种颜色的笔,比如黑笔、蓝笔、红笔、绿笔,把重点、难点和你自己薄弱的点凸显出来,越凸越好。彩色标签贴,贴在笔记纸页缘,写上关键字,方便快速找到每个学期的笔记页。
B. 留白
数学也是门艺术,所以也得留白(艺术界的词儿,语文上也常用,就是留下相应的空白,留有想象的空间)。怎么留?墙裂建议每页笔记左边记课堂笔记,右侧1/3或1/4的空间预留出来,don't把整页笔记写满,留白部分用于在相应知识点处补充做题和复习时的方法和 总结 ,以及整理做错的题目。另外,每一章的笔记记完之后,再预留一页笔记空着,期末复习会用到~ 现在是不是觉得1CM厚的笔记本有些不够用了嘞~
C.简记有妙招
速度太慢就跟不上老师讲课魔鬼的步伐,听课笔记两相误。为了听、记两不误,必须提高书写速度!记笔记不必将每个字写得完完整整,以清楚明了为指导方针。善用符号或简写,比如“平面直角坐标系”记成“平直系”,“等腰直角三角形”记成“等直△”,“平行”记成“∥”等。这可不是偷懒,是机智!
D.图形会说话
一个好的图形胜过好几行文字和公式的描述。
符号+标注法
这个方法是最常用的,几乎每位同学都使用过这种方法,尤其是中学时期,整个课本都是花花绿绿的印记。这种方法一目了然且简单快速,再次复习时也更加便捷。
但跟中学不同的是, 考研 复习需要同学们自己去抓重点,去把握每个知识点的内在联系,很多同学在刚开始复习的时候陷入了盲目划重点的怪圈,就像中学的某些政治老师:
“同学们,我们来划一下重点。从第一段到第二段,第三段到第四段……”
“这不是全都要吗?!”
“呃,没错,整章都是重点!”
做标注之前一定要先理解知识点的结构,区分重难点,根据情况做标记,而不是看到哪划到哪。
在这里我要特别提醒:注意符号的逻辑性。每个符号代表什么样的意思?上下级关系和平行关系的知识点该如何区分?颜色不同的记号是否代表不同的意思?
......
总之,就是用自己舒服的,能够看得懂的标记来帮助自己加深知识点的记忆,拓宽知识面,方便复习。
数学的读书笔记(通用3篇)
当赏读完一本名著后,大家一定对生活有了新的感悟和看法,此时需要认真思考读书笔记如何写了哦。是不是无从下笔、没有头绪?下面是我为大家整理的数学的读书笔记,欢迎阅读,希望大家能够喜欢。
数学的读书笔记1
在数学课堂教学中,既需要注重学生知识、能力与培养,又要注重学生情感态度的培养。应该说,情感态度的培养比知识能力的培养更重要。小学数学课程标准中明确提出:“培养孩子积极思考的态度,使孩子在学习过程中增强学习数学的信心,培养孩子学习数学的兴趣。”我从这几句浅显的话语中悟出了许多深刻的道理。
现代社会是一个知识经济爆炸的年代,社会对孩子的需求也越来越高,作为新一代的教师,我们不仅要培养出成绩优异的孩子,而且要培养出具有自信心的良好心态的孩子。因为实践证明,良好的心态是成功的第一保障,现代儿童的心理问题已经给我们的教育提出了许多严峻的课题。因此,我认为数学课堂上也要注重学生情感态度的培养。
在这个问题上,我认为可以从以下三个方面重点培养,主要是积极主动的参与意识;学习数学的自信心;学习数学的兴趣。仔细思考了一下这三个方面应该是互相联系、辨证统一的。有了积极主动的参与意识,自信心就慢慢培养了起来,有了学习数学的自信心就有了学习数学的兴趣,如何培养孩子这些方面的情感态度。
首先,在课堂上要充分体现以学生为主体,真正体现学生是学习的主人,创设民主、与谐的课堂氛围。在课堂上,教师不能以传统填鸭式的方式教学,要让学生通过操作、实验、交流、讨论等活动,自己经历知识的形成过程,自己总结出结论,充分体现学生自主学习、自主探索,这样慢慢的培养起学生的自主参与意识。
其次,要多给孩子鼓励,多给孩子信心,任何孩子在成长中都会犯这样、那样的错误,在数学学习中也难免如此。这时,老师不要一味地批评,因为过度地批评会让孩子失去信心,会让孩子缺乏思考的勇气,久而久之就会使孩子只学会接受,没有自己的思考与思想,更谈不上学习的自信心与兴趣了。所以,我们在教学中应该多以鼓励为主,多给孩子一些信心,相信你的学生是最棒的。
最后,我认为除了在思想、情感上多以积极的心态培养孩子外,还应该给孩子们创设学习数学的良好氛围,让孩子们在一个喜欢数学的环境中学习,受到薰染,培养孩子的兴趣。
自信心是成功的第一步阶梯,作为一个教师,有义务也有责任为这一步阶梯奠基,要让学校成为培养孩子自信心的摇篮,不要让孩子的自信心被扼杀在了摇篮里。
我要努力让自己的每节课既要注重学生知识能力的培养,又要注重情感态度的培养。
数学的读书笔记2
暑假读了黄先明的《高中数学学习方法》。
首先,他告诉我们高中数学学习要注意以下三点。
一、课内重视听讲,课后及时复习。重视课内的学习效率,要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,在每个阶段的学习中要进行整理与归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集。
三、调整心态,正确对待考试。首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,在考试前要做好准备,练练常规题,把自己的思路展开。
其次,他将初中数学与高中数学进行了比较。
1、知识差异。高中数学知识广泛,将对初中的数学知识推广与引伸,也是对初中数学知识的完善。
2、学习方法的差异。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维与培养学生的创造能力培养。
3、学生自学能力的差异。高中的知识面广,知识全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。最重要的,是告诉了我们如何建立好的学习数学兴趣。
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的.提问、停顿、教具与模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。
总结起来,高中数学学习就是要:多质疑、勤思考、好动手、重归纳、注意应用。
数学的读书笔记3
1、数学是抽象的,理解数学的一个层面便是,赋予数学直观和具体的意义。
2、过份强调数学的形式结构是个错误。
3、抽象只有在坚实的经验基础上才有意义,此外,引进抽象观念后,应该用具体问题来显示她们的用处。
4、现代数学好的方向是它强调几个基本的概念,诸如,对称、连续和线性。
5、几何直观仍然是领悟数学的最有效的渠道。几何直观就是对于抽象的东西,能够在头脑中像画画一样描绘出来并加以思考。
6、数学教学与人的素质发展相结合,是数学教育的最主要的宗旨。
7、几何图形是一种数学符合,是“直观空间的帮助记忆的符号”,是“图像化的公式”。
8、数学真正要办的事情是解决具体的问题。理解一个理论的最好的办法是找到一个具体问题,然后研究该理论的一个样本实例,一个能说明一切的典型例子。
9、针对一个数学理论,举出典型实例、反例、特例(即特殊情形)等,都市具体地理解这种数学理论的方法。
10、逻辑用于证明,直觉用于发明。
11、在理解数学的过程中,领悟推理链中所隐含的整体性、次序性、和谐性,达到对推理链的整体把握,乃至能够预见证明,这种领悟叫做直觉。
12、记忆在数学中是重要的,但不必去记住数学事实。
13、数学直觉意味着不严格;意味着可见;意味着缺乏证明时的似真性和可信性;意味着不完全;意味着依赖物理模型或某些主要例子;意味着与详细或分析相对立的笼统或综合。
标签: 读书笔记 数学