初中数学基础知识大全(小学初中数学基础知识大全)

2023-02-22 10:47:02 摩斯密码知识 思思

初中数学知识点总结大全 重点都在这了

初中生学习数学要特别注意知识点的总结,下面我为大家总结了初中 数学知识点 ,仅供大家参考。

数学基础知识点

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

初中数学重点知识点

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

数学基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

以上就是我为大家总结的 初中数学 知识点总结大全,仅供参考,希望对大家有所帮助。

初中数学基础知识大全(小学初中数学基础知识大全) 第1张

初中数学基础知识点总结

初中数学只要内容是函数的学习,其中重点是二次函数的解法。二次函数在数学中占有一定地位,甚至以后的数学学习中都会遇到二次函数问题,因此牢牢掌握二次函数的解法对于大家以后数学学习十分有帮助。现在将初中数学重要知识点整理如下,供大家学习。

目录

有理数

代数式

分式的运算

方程与方程组

有理数

1、数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

2、绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

3、有理数的运算:

加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

4、实数:

①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

代数式

1、合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

2、整式与分式,整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

3、整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N)(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法 :提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算

1、乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

2、除法:除以一个分式等于乘以这个分式的倒数。

3、加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

4、分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

方程与不等式

方程与方程组

1、一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

2、解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

3、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

4、二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

5、一元二次方程的二次函数的关系

关于二次函数的解法公式其实很简单,关键是我们如何应用这些公式来解答实际问题,这有待于大家在以后学习过程中勤加练习, 总结 经验 了。

相关 文章 :

1. 初中数学基础知识点总结

2. 初中数学知识点整理:

3. 初一数学基础知识有哪些?

4. 初中数学的常考知识点20条

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

初中数学基础知识点归纳总结

初中数学教学,注重培养学生正确的数学情操和几何思维能力。下面是我为大家整理的关于初中数学基础知识点归纳 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!

初中数学基础知识点归纳总结

1、定理1 关于中心对称的两个图形是全等的

2、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

3、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

4、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

5、等腰梯形的两条对角线相等

6、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

7、对角线相等的梯形是等腰梯形

8、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

9、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

10、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

11、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

12、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

13、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d

14、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

15、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

16、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

17、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

18、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

19、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

20、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

21、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

22、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

23、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

24、判定定理3 三边对应成比例,两三角形相似(SSS)

25、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

26、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

27、性质定理2 相似三角形周长的比等于相似比

28、性质定理3 相似三角形面积的比等于相似比的平方

29、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

30、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

31、圆是定点的距离等于定长的点的集合

32、圆的内部可以看作是圆心的距离小于半径的点的集合

33、圆的外部可以看作是圆心的距离大于半径的点的集合

34、同圆或等圆的半径相等

35、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

36、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

37、到已知角的两边距离相等的点的轨迹,是这个角的平分线

38、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

39、定理 不在同一直线上的三点确定一个圆。

40、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

41、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

42、推论2 圆的两条平行弦所夹的弧相等

43、圆是以圆心为对称中心的中心对称图形

44、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

45、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

46、定理 一条弧所对的圆周角等于它所对的圆心角的一半

47、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

48、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

49、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

50、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

51、①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 dr

52、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

53、切线的性质定理 圆的切线垂直于经过切点的半径

54、推论1 经过圆心且垂直于切线的直线必经过切点

55、推论2 经过切点且垂直于切线的直线必经过圆心

56、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

57、圆的外切四边形的两组对边的和相等

58、弦切角定理 弦切角等于它所夹的弧对的圆周角

59、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

60、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

61、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

62、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

63、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等

64、如果两个圆相切,那么切点一定在连心线上

65、①两圆外离 dR+r ②两圆外切 d=R+r③两圆相交 R-rr)

④两圆内切 d=R-r(Rr) ⑤两圆内含 dr)

66、定理 相交两圆的连心线垂直平分两圆的公共弦

67、定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

68、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

69、正n边形的每个内角都等于(n-2)×180°/n

70、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

71、正n边形的面积Sn=pnrn/2 p表示正n边形的周长

72、正三角形面积√3a/4 a表示边长

73、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

74、弧长计算公式:L=n兀R/180

75、扇形面积公式:S扇形=n兀R^2/360=LR/2

76、内公切线长= d-(R-r) 外公切线长= d-(R+r) 本回答被提问者采纳

怎样学好初中数学

1、深刻理解概念,概念是数学的基石,学习概念不仅要知其然,还要知其所以然。

2、对于每个定义、定理必须在牢记其内容的基础上知道是怎样得来的,又是运用到何处的。

3、多看一些例题,不能只看皮毛,不看内涵。

4、要把想和看结合起来,各难度层次的例题都照顾到。

5、看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处,例题有现成的解答,思路清晰,只需循着思路走,就会得出结论,所以可以看一些技巧性较强、难度较大的例题。

相关 文章 :

1. 初中数学基础知识点总结

2. 初中数学基础知识点总结之有理数

3. 初中数学知识点整理

4. 初一数学知识点归纳与学习方法

5. 初一数学基础知识有哪些?

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

初中数学基础知识点有哪些

初中数学基础知识大全:直角坐标系与点的位置

1. 直角坐标系中,点A(3,0)在y轴上。

2. 直角坐标系中,x轴上的任意点的横坐标为0。

3. 直角坐标系中,点A(1,1)在第一象限。

4. 直角坐标系中,点A(-1,1)在第二象限。

5. 直角坐标系中,点A(-1,-1)在第三象限。

6. 直角坐标系中,点A(1,-1)在第四象限。

初中数学基础知识大全:特殊三角函数值

1.cos30°=√3/2

2.sin2 60°+ cos2 60°= 1

3.2sin30°+ tan45°= 2

4.tan45°= 1

5.cos60°+ sin30°= 1

初中数学基础知识大全:圆的基本性质

1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆.

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

6.同圆或等圆的半径相等。

7.过三个点一定可以作一个圆。

8.长度相等的两条弧是等弧。

9.在同圆或等圆中,相等的圆心角所对的弧相等。

10.经过圆心平分弦的直径垂直于弦。

九年级数学基础知识点

天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。

初三年级下学期数学知识点

反比例函数

形如y=k/x(k为常数且k≠0,x≠0,y≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

当K0时,反比例函数图像经过一,三象限,是减函数(即y随x的增大而减小)

当K0时,反比例函数图像经过二,四象限,是增函数(即y随x的增大而增大)

由于反比例函数的自变量和因变量都不能为0,所以图像只能无限向坐标轴靠近,无法和坐标轴相交。

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/x(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

二次函数

知识点一、平面直角坐标系

1,平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征

1、各象限内点的坐标的特征

点P(x,y)在第一象限

点P(x,y)在第二象限

点P(x,y)在第三象限

点P(x,y)在第四象限

2、坐标轴上的点的特征

点P(x,y)在x轴上,x为任意实数

点P(x,y)在y轴上,y为任意实数

点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)

3、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线上x与y相等

点P(x,y)在第二、四象限夹角平分线上x与y互为相反数

4、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数

点P与点p’关于原点对称横、纵坐标均互为相反数

6、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于

(2)点P(x,y)到y轴的距离等于

(3)点P(x,y)到原点的距离等于

初 三年级数学 知识点归纳

旋转

一.知识框架

二.知识概念

1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。)

2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。

3.中心对称图形与中心对称:

中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

4.中心对称的性质:

关于中心对称的两个图形是全等形。

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。

九年级上册数学复习知识点

知识点1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常数项是-2。

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

知识点2:直角坐标系与点的位置

1、直角坐标系中,点A(3,0)在y轴上。

2、直角坐标系中,x轴上的任意点的横坐标为0。

3、直角坐标系中,点A(1,1)在第一象限。

4、直角坐标系中,点A(-2,3)在第四象限。

5、直角坐标系中,点A(-2,1)在第二象限。

知识点3:已知自变量的值求函数值

1、当x=2时,函数y=的值为1。

2、当x=3时,函数y=的值为1。

3、当x=-1时,函数y=的值为1。

知识点4:基本函数的概念及性质

1、函数y=-8x是一次函数。

2、函数y=4x+1是正比例函数。

3、函数是反比例函数。

4、抛物线y=-3(x-2)2-5的开口向下。

5、抛物线y=4(x-3)2-10的对称轴是x=3。

6、抛物线的顶点坐标是(1,2)。

7、反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数

1、数据13,10,12,8,7的平均数是10。

2、数据3,4,2,4,4的众数是4。

3、数据1,2,3,4,5的中位数是3。

知识点6:特殊三角函数值

1.cos30°=。

2.sin260°+cos260°=1。

3.2sin30°+tan45°=2。

4.tan45°=1。

5.cos60°+sin30°=1。

九年级数学基础知识点相关 文章 :

★ 初三数学基础知识点总结

★ 九年级数学上册重要知识点总结

★ 九年级数学知识点上册

★ 九年级上册数学知识点归纳整理

★ 初三数学知识点考点归纳总结

★ 初中数学基础知识点总结

★ 初中数学基础知识点归纳总结

★ 初三数学知识点归纳总结

★ 初三数学基础知识的复习规划

★ 初三数学复习知识点总结

初中数学基础知识大全 初中数学基础知识介绍

1、知识点:一元二次方程的基本概念

一元二次方程3x2+5x-2=0的常数项是-2。

一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.

2、知识点:直角坐标系与点的位置

直角坐标系中,点(3,0)在y轴上。

直角坐标系中,x轴上的任意点的横坐标为0。

直角坐标系中,点A(1,1)在第一象限。

角坐标系中,点A(-2,3)在第四象限。

直角坐标系中,点(-2,1)在第二象限。

3、知识点:已知自变量的值求函数值

当x=2时,函数y=的值为1。

当x=3时,函数y=的值为1。

当x=-1时,函数y=的值为1。

4、知识点:基本函数的概念及性质

函数y=-8x是一次函数。

函数y=4x+1正比例函数。

函数是反比例函数。

抛物线y=-3(x-2)2-5的开口向下。

抛物线y=4(x-3)2-10的对称轴是x=3。

抛物线的顶点坐标是(1,2)。

反比例函数的图象在第一、三象限。