2011-03-06 18:171.因为当x=0时,y=6
x=8时,y=0
所以可得方程组:b=6
8k+b=0
解之得,k=-3/4
b=6
所以y=-3/4x+6
2因为三角形APQ与三角形AOB相似
所以要分两种情况讨论
(1)当三角形APQ与三角形AOB相似
因为角AOB=90度 所以有勾股定理得 AB=10
所以AP/AO=AQ/AB
所以t/6=10-2t/10
解之得,t=30/11
(2)当三角形AQP与三角形AOB相似
所以AQ/AO=AP/OB
所以10-2t/6=t/8
解之得t=40/11
(本题要注意相似三角形对应的问题,要考虑2种情.况)
3.作QC垂直AO
因为三角形ACQ=90度 所以ACQ相似于AOB
设CQ=X
则:AQ/QB=CQ/OB
所以10-2t/10=x/8
x=8-1.6t
所以三角形APQ的面积可以表示为:
AP*QC=t*(8-1.6t)
因为三角形APQ的面积为五分之二十四
所以t*(8-1.6t)=24/5
化简,解之得:t1=5+根号13(舍去) t2=5-根号13
(本题的关键是用含t的代数式表示APQ的高)
解:(1)B(0,4),OB=4,OA=3,OC=3,
直线解析式为:y=-43x+4,
抛物线的解析式为:y=x2-4x+3;
(2)(2)若⊙P与直线AB及x轴都相切,
则点P在∠BAO或它的外角的平分线所在的直线上.
①设∠BAO的外角平分线交y轴于D,过D作DH⊥AB于H,
则DH=DO=m,BD=4-m,AH=AO=3,BH=5-3=2
在Rt△BHD中,BD2=BH2+DH2
即(4-m)2=m2+22,
解得:m=32
即D(0,1.5)
则直线AD的解析式为:y=-12x+32,
将其与抛物线的解析式y=x2-4x+3联立解得:{x1=3;y1=0,{x2=12;y2=54
即P(12,54)
②设∠BAO外角的平分线交y轴于G,
则AG⊥AD于A,则△DOA∽△AOG,故OG=2OA=6
即G(0,-6)直线DG解析式为:y=2x-6
将其与抛物线的解析式y=x2-4x+3联立解得:{x1=3;y1=0
∴存在点P(12,54),使⊙P与直线AB及x轴都相切
(3)过P作PM⊥x轴于M,显然PM是Rt△OQE的中位线,即OE=2OM=2|x|,QE=2PM
点P在抛物线x2-4x+3上,则P(x,x2-4x+3),QE=2PM=2|x2-4x+3|
①当x<0时,x2-4x+3>0,OE=-2x,y=2[-2x+2(x2-4x+3)]=4x2-20x+12
②当1<x<3时,x2-4x+3<0,y=2[2x-2(x2-4x+3)]=-4x2+20x-12
③当0<x<1或x>3时,x2-4x+3>0,y=2[2x+2(x2-4x+3)]=4x2-12x+12
难题已发了
解:
(1)因为方程x^2-12x+32=0的两根为
X1=8,x2=4
由于OA,OB的长为方程的两根,则必有OA=8,0B=4
根据图示AB的位置关系,则:
点A的坐标为A(-8,0),点B的坐标为B(0,4)
设经过AB的直线方程为:Y=KX+4
将A(-8,0)带入求得K=1/2
则直线AB的方程为y=x/2+4
(2)设P点坐标为P(m,n)
P点在直线y=x/2+4上,则有:
m/2+4=n
因为:AP/PB=1/3
则:√[(m+8)^2+n^2]/ √[m^2+(n-4)^2]=1/3
即[(m+8)^2+n^2]/ [m^2+(n-4)^2]=1/9
将m/2+4=n带入方程消去n并整理可得:
m^2+18m+72=0
解得m=-6或-12
因为P在AB上,则必有-8=m=0
则m=-6,n=1
则P坐标为P(-6,1)
设反比例函数为y=k/x
将y的坐标带入可得:k=-6
则y=-6/x
(3)由前面的计算可知:A(-8,0),P(-6,1)则AP=√(2^2+1^2)=√5
显然OA=8AP=√5,而OP=√37OA=8
则OA边必定不能为梯形的腰,由图示OA与AP线段的位置可知:
要使得四边形APOQ为等腰梯形,必然OA为梯形的下底,AP为腰。
问题转化为在△AOB内是否存在一点Q使得四边形APOQ为等腰梯形。
不妨假设存在点Q(s,t)使得四边形APOQ为等腰梯形,那么必有:
PQ∥OA,即必有t的值为P点的纵坐标,即t=1
则Q坐标为(s,1)
由等腰梯形两腰相等,则必有:
OQ=AP
即√(s^2+1)= √3
解得:s=±√2
由于点Q在△AOB内,则-8=s=0
所以s=-√2
则点Q坐标为(-√2,1)
由上面的计算可知,存在这样的点Q使得四边形APOQ为等腰梯形,点Q坐标为:
Q(-√2,1)
一、单点运动
例1.(2006长春)如图,在平面直角坐标系中,两个函数y=x, 的图象交于点A。动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ//x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与ΔOAB重叠部分的面积为S。
(1)求点A的坐标。
(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式。
(3)在(2)的条件下,S是否有最大值?若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由。
(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN和ΔOAB重叠部分面积最大时,运动时间t满足的条件是__________。
解:(1)由 ,可得
∴A(4,4)。
(2)点P在y=x上,OP=t,
则点P坐标为( )。
点Q的纵坐标为 ,并且点Q在 上。
∴ 。
点Q的坐标为( )
PQ 。
当
当 时,
当点P到达A点时,
当 时,
(3)有最大值,最大值应在 中,
当 时,S的最大值为12。
(4)
二、双点运动
例2.(2006广安)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线 经过点A、B,且 。
(1)求抛物线的解析式。
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动。
①移动开始后第t秒时,设 ,试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标,如果不存在,请说明理由。
解:(1)据题意知:
A(0,-2),B(2,-2)
∵A点在抛物线上,∴
由AB=2知抛物线的对称轴为:x=1
即:
∴抛物线的解析式为:
(2)①由图象知:
即
②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形。
∵
∴
∴ 。这时 ,BQ=0.8,P(1.6,-2),Q(2,-1.2)
分情况讨论:
A)假设R在BQ的右边,这时 ,则:
R的横坐标为2.4,R的纵坐标为-1.2,
即(2.4,-1.2)
代入 ,左右两边相等
∴这时存在R(2.4,-1.2)满足题意。
B)假设R在BQ的左边,这时 ,则:
R的横坐标为1.6,纵坐标为-1.2,
即(1.6,-1.2)
代入 ,左右两边不相等,R不在抛物线上。
C)假设R在PB的下方,这时 ,则:
R(1.6,-2.4)代入 ,左右不相等,R不在抛物线上。
综上所述,存在一点R(2.4,-1.2)
三、直线运动
例3.(2006锦州)如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方)。
(1)求A、B两点的坐标;
(2)设ΔOMN的面积为S,直线l运动时间为t秒( ),试求S与t的函数表达式;
(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?
解:(1)∵四边形OBABC为菱形,点C的坐标为(4,0)
∴OA=AB=BC=CO=4。
过点A作AD⊥OC于D。
∵∠AOC=60°,
∴OD=2, 。
∴A(2, ),B(6, )。
(2)直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:
① 时,直线l与OA、OC两边相交(如图①)。
∵MN⊥OC,∴ON=t。
∴ 。
。
②当 时,直线l与AB、OC两边相交(如图②)
。
③当 时,直线l与AB、BC两边相交(如图③)
设直线l与x轴交于点H。
∵
,
∴
。
∴
,
(3)由(2)知,当 时, ;
当 时, ;
当 时,配方得 ,
∴当t=3时,函数 。
但t=3不在 内,
∴在 内,函数 的最大值不是 。
而当t3时,函数 随t的增大而减小,
∴当 。
综上所述,当t=4秒时, 。
四、三角形运动
例4.(2006青岛)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是ΔEFG斜边上的中点。
如图②,若整个ΔEFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在ΔEFG平移的同时,点P从ΔEFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,ΔEFG也随之停止平移。设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)。
(1)当x为何值时,OP//AC?
(2)求y与x之间的函数关系式,并确定自变量x的取值范围。
(3)是否存在某一时刻,使四边形OAHP面积与ΔABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由。
(参考数据:
)
解:(1)∵RtΔEFG∽RtΔABC,
∴ 。
∴ 。
∵当P为FG的中点时,OP//EG,EG//AC,
∴OP//AC。
∴ 。
∴当x为1.5s时,OP//AC。
(2)在RtΔEFG中,由勾股定理得:EF=5cm。
∵EG//AH,
∴ΔEFG∽ΔAFH。
∴ 。
∴ 。
∴ 。
过点O作OD⊥FP,垂足为D。
∵点O为EF中点,
∴ 。
∵ ,
∴
(3)假设存在某一时刻x,使得四边形OAHP面积与ΔABC面积的比为13:24。
则
∵0x3,
∴当 时,四边形OAHP面积与ΔABC面积的比为13:24。
五、矩形运动
例5.(2006南安)如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5。若矩形以每秒2个单位长度沿x轴正方向作匀速运动。同时点P从A点出发以每秒1个单位长度沿A—B—C—D的路线作匀速运动。当P点运动到D点时停止运动,矩形ABCD也随之停止运动。
(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒)。
①当t=5时,求出点P的坐标;
②若ΔOAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围)。
解:(1)P点从A点运动到D点所需的时间= (秒)
(2)①当t=5时,P点从A点运动到BC上,
此时OA=10,AB+BP=5,
∴BP=2
过点P作PE⊥AD于点E,
则PE=AB=3,AE=BP=3
∴
∴点P的坐标为(12,3)。
②分三种情况:
(i)当 时,点P在AB上运动,
此时OA=2t,AP=t
(ii)当 时,点P在AB上运动,此时OA=2t
∴
(iii)当8t11时,点P在CD上运动,
此时OA=2t,
∴
综上所述,s与t之间的函数关系式是:当 时, ;当 时,s=3t;当8t11时,
六、圆的运动
例6.(2006南昌)已知抛物线 ,经过点A(0,5)和点B(3,2)
(1)求抛物线的解析式;
(2)现有一半径为1,圆心P在抛物线上运动的动圆,问⊙P在运动过程中,是否存在⊙P与坐标轴相切的情况?若存在,请求出圆心P的坐标;若不存在,请说明理由;
(3)若⊙Q的半径为r,点Q在抛物线上、⊙Q与两坐轴都相切时求半径r的值。
解:(1)由题意,得
解得
抛物线的解析式为
(2)当⊙P在运动过程中,存在⊙P与坐标轴相切的情况。(如图1)
图1
设点P坐标为( , )
则当⊙P与y轴相切时,有
由
∴P1(-1,10),
由 ,得
∴P2(1,2)
当⊙P与x轴相切时有
∵抛物线开口向上,且顶点在x轴的上方。
∴y0=1
由 ,得 ,解得 ,B(2,1)
综上所述,符合要求的圆心P有三个,其坐标分别为:
P1(-1,10),P2(1,2),P3(2,1)
(3)设点Q坐标为(x,y),则当⊙Q与两条坐标轴都相切时(如图2),有 由y=x得 ,
即 ,解得 ;
由 ,得 。
即 ,此方程无解
∴⊙O的半径为