七年级上册数学知识点简单归纳(七年级上册数学知识点总结)

2023-03-01 22:28:15 摩斯密码知识 思思

七年级上册数学知识点归纳

七年级(上)数学知识点归纳与总结

一、 知识梳理

知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、 -0.03%这样数叫做负数.它们都是比0小的数.0既不是正数也不是负数.我们可以用正数与负数表示具有相反意义的量.

知识点2:有理数的概念和分类:整数和分数统称有理数.有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数.

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴.

知识点4:绝对值的概念:

(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5:相反数的概念:

(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数.0的相反数是0.

知识点6:有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数.

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大.

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小.

知识点7:有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8:有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变.

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数.

知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算.

知识点11: 乘法与除法

1.乘法法则

2.除法法则

3.多个非零的数相乘除最后结果符号如何确定

知识点12:倒数

1. 倒数概念

2. 如何求一个数的倒数?(注意与相反数的区别)

知识点13:乘方

1. 乘方的概念,乘方的结果叫什么?

2. 认识底数,指数

3. 正数的任何次幂是_________,零的任何次幂________

负数的偶次幂是_________奇次幂是________

知识点14:混合计算

注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.

知识点15:科学记数法

科学记数法的概念? 注意a的范围

初一上册数学知识点总结归纳

初一数学是初中数学的基础,这篇文章我给大家总结归纳了初一上册数学课本的重要知识点,供同学们参考。

有理数

(1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

(2)数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

(3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

(4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(5)有理数的加减法

同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

(6)有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0.例:0×1=0

(7)有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除

以任何一个不为0的数,都得0。

(8)有理数的乘方

求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

一元一次方程

(1)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。

(2)一元一次方程

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

(3)等式的性质

①等式两边同时加上(或减去)同一个整式,等式仍然成立。

若a=b

那么a+c=b+c

②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

若a=b

那么有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an

(3)解方程式的步骤

解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。

①去分母:把系数化成整数。

②去括号

③移项:把等式一边的某项变号后移到另一边。

④合并同类项

⑤系数化为1。

角的知识点

1.角:角是由两条有公共端点的射线组成的几何对象。

2.角的度量单位:度、分、秒

3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点

4.角的比较:

(1)角可以看成是由一条射线绕着他的端点旋转而成的。

(2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。

(3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

5.余角和补角:

(1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。

性质:等角的余角相等。

(2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。

性质:等角的补角相等。

七年级上册数学知识点简单归纳(七年级上册数学知识点总结) 第1张

初一上册数学知识点归纳整理

数学的学习在于练习,勤加练习能帮助我们打开思维的逻辑,下面是我给大家带来的初一上册数学知识点归纳整理,希望能够帮助到大家!

初一上册数学知识点归纳整理

第一章有理数

(一)正负数

1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数

1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴

1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法

1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b=a+(-b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)

1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba

4.乘法结合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理数除法

1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

(七)乘方

1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

3.同底数幂相乘,底不变,指数相加。

4.同底数幂相除,底不变,指数相减。

(八)有理数的加减乘除混合运算法则

1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(九)科学记数法、近似数、有效数字。

第二章整式(一)整式

1.整式:单项式和多项式的统称叫整式。

2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

3.系数;一个单项式中,数字因数叫做这个单项式的系数。

4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

5.多项式:几个单项式的和叫做多项式。

6.项:组成多项式的每个单项式叫做多项式的项。

7.常数项:不含字母的项叫做常数项。

8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。

1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

整理了知识点,我们来看看相关的练习题吧。根据做题的情况分析有哪些知识点是自己还没有掌握的。

1,从数轴上看,0是()

A,最小整数B,最大的负数C,最小的有理数D最小的非负数

2,一个数的相反数小于它本身,这个数是()

A,非负数B,正数C,0D,负数

3,冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是()

A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃

4,下列说法正确的有()

A,正数和负数统称为有理数B,有理数是指整数、分数、正有理数、负有理数和0五类C,一个有理数不是整数就是分数D,整数包括正整数和负整数

5,若a、b为有理数,a0,b0,且|a||b|,那么下列说法不正确的是()

A,若将数a、b在数轴上表示出来,则a在原点右侧,b在原点左侧。

B,因正数大于一切负数,所以ab。

C,若将数a、b在数轴上表示出来,则数a与原点的距离比较b与原点的距离小。

D,在数轴上,表示a,|a|,b的点从左到右依次为a,b,|a|

6,在下列代数式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多项式有()A.2个B.3个C.4个D5个

7,多项式-23m2-n2是()A.二次二项式B.三次二项式C.四次二项式D五次二项式

8,下列说法正确的是()

A.3x2―2x+5的项是3x2,2x,5

B.(3/x)-(3/y)与2x2―2xy-5都是多项式

C.多项式-2x2+4xy的次数是3

D一个多项式的次数是6,则这个多项式中只有一项的次数是6

9,下列说法正确的是()

A.整式abc没有系数

B.(x/2)+(y/3)+(z/4)不是整式

C.-2不是整式

D.整式2x+1是一次二项式

10,下列代数式中,不是整式的是()

A、-3x2 B、(5a-4b)/7 C、(3a+2)/5x D、-2005

参考答案

1——5 DBCCD

6——10 BABDC

七年级数学上册知识点总结

;     七年级数学上册知识点总结(通用8篇)

      总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可以促使我们思考,为此要我们写一份总结。那么如何把总结写出新花样呢?下面是小编为大家整理的七年级数学上册知识点总结(通用8篇),欢迎大家分享。

七年级数学上册知识点总结 篇1

数轴

      1、数轴的概念

      规定了原点,正方向,单位长度的直线叫做数轴。

      注意:(1)数轴是一条向两端无限延伸的直线;(2)原点、正方向、单位长度是数轴的三要素,三者缺一不

      可;(3)同一数轴上的单位长度要统一;(4)数轴的三要素都是根据实际需要规定的。

      2、数轴上的点与有理数的关系

      (1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

      (2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

      3、利用数轴表示两数大小

      (1)在数轴上数的大小比较,右边的数总比左边的数大;

      (2)正数都大于0,负数都小于0,正数大于负数;

      (3)两个负数比较,距离原点远的数比距离原点近的数小。

      4、数轴上特殊的(小)数

      (1)最小的自然数是0,无的自然数;

      (2)最小的正整数是1,无的正整数;

      (3)的负整数是-1,无最小的负整数

      5、a可以表示什么数

      (1)a0表示a是正数;反之,a是正数,则a0;

      (2)a

      (3)a=0表示a是0;反之,a是0,,则a=0

七年级数学上册知识点总结 篇2

第一章 有理数

      (一)正负数

      1、正数:大于0的数。

      2、负数:小于0的数。

      3、0即不是正数也不是负数。

      4、正数大于0,负数小于0,正数大于负数。

      (二)有理数

      1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

      2、整数:正整数、0、负整数,统称整数。

      3、分数:正分数、负分数。

      (三)数轴

      1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

      2、数轴的三要素:原点、正方向、单位长度。

      3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

      4、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

      (四)有理数的加减法

      1、先定符号,再算绝对值。

      2、加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

      3、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

      4、加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

      5、 ab = a +(b) 减去一个数,等于加这个数的相反数。

      (五)有理数乘法(先定积的符号,再定积的大小)

      1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

      2、乘积是1的两个数互为倒数。

      3、乘法交换律:ab= ba

      4、乘法结合律:(ab)c = a (b c)

      5、乘法分配律:a(b +c)= a b+ ac

      (六)有理数除法

      1、先将除法化成乘法,然后定符号,最后求结果。

      2、除以一个不等于0的数,等于乘这个数的倒数。

      3、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

      (七)乘方

      1、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

      2、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

      (八)有理数的加减乘除混合运算法则

      1、先乘方,再乘除,最后加减。

      2、同级运算,从左到右进行。

      3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

      (九)科学记数法、近似数、有效数字。

第二章 整式

      (一)整式

      1、整式:单项式和多项式的统称叫整式。

      2、单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

      3、系数:一个单项式中,数字因数叫做这个单项式的系数。

      4、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

      5、多项式:几个单项式的和叫做多项式。

      6、项:组成多项式的每个单项式叫做多项式的项。

      7、常数项:不含字母的项叫做常数项。

      8、多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

      9、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

      10、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

      (二)整式加减

      整式加减运算时,如果遇到括号先去括号,再合并同类项。

      1、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

      如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

      2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

      合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

第三章 一元一次方程

      分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

      (一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。

      (二)一元一次方程:

      1、一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

      2、解:求出的方程中未知数的值叫做方程的解。

      (二)等式的性质

      1、等式两边加(或减)同一个数(或式子),结果仍相等。

      如果a= b,那么a± c= b± c

      2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

      如果a= b,那么a c= b c;

      如果a= b,(c0),那么a ?Mc = b ?M c。

      (三)解方程的步骤

      解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。

      1、去分母:把系数化成整数。

      2、去括号

      3、移项:把等式一边的某项变号后移到另一边。

      4、合并同类项

      5、系数化为1

第四章 图形认识初步

      一、图形认识初步

      1、几何图形:把从实物中抽象出来的各种图形的统称。

      2、平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。

      3、立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。

      4、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

      5、点,线,面,体

      1图形是由点,线,面构成的。

      2线与线相交得点,面与面相交得线。

      3点动成线,线动成面,面动成体。

      二、直线、线段、射线

      1、线段:线段有两个端点。

      2、射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。

      3、直线:将线段的两端无限延长就形成了直线。直线没有端点。

      4、两点确定一条直线:经过两点有一条直线,并且只有一条直线。

      5、相交:两条直线有一个公共点时,称这两条直线相交。

      6、两条直线相交有一个公共点,这个公共点叫交点。

      7、中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

      8、线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)

      9、距离:连接两点间的线段的长度,叫做这两点的距离。

      三、角

      1、角:有公共端点的两条射线组成的图形叫做角。

      2、角的度量单位:度、分、秒。

      3、角的度量与表示:

      1角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

      2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。

      4、角的比较:

      1角也可以看成是由一条射线绕着他的端点旋转而成的。

      2平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。

      3平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

      4工具:量角器、三角尺、经纬仪。

      5、余角和补角

      1余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。

      2补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。

      3补角的性质:等角的补角相等。

      4余角的性质:等角的余角相等。

七年级数学上册知识点总结 篇3

      1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)

      2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。

      3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠。

      4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若1分母中不含有字母,2式子中含有加、减运算关系,也不是单项式、

      单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)

      单项数的次数:是指单项式中所有字母的指数的和、(注意指数1)

      5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式、特别注意多项式的项包括它前面的性质符号、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

七年级上册数学知识点归纳总结

数学在初中学习中是一门十分重要的科目,下面是总结的一些七年级上册的重点数学知识点,供大家参考。

整式的加减

一、代数式

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式

1、单项式:

(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列

(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

图形的初步认识

一、立体图形与平面图形

1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线

1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角

1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

数据的收集和整理

一.数据的收集

1. 所要考察的对象的全体叫做总体;

把组成总体的每一个考察对象叫做个体;

从总体中取出的一部分个体叫做这个总体的一个样本.

二.普查和抽样调查

1. 为一特定目的而对所有考察对象作的全面调查叫做普查;

为一特定目的而对部分考察对象作的调查叫做抽样调查.

2. 抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值。而估计值是否接近实际情况还取决于样本选得是否有代表性。

三.数据的表示

科学记数法:一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a10,n是正整数,这种记数方法叫做科学记数法。

四.统计图的特点

折线统计图:能够清晰地反映同一事物在不同时期的变化情况。

条形统计图:能够清晰地反映每个项目的具体数目及之间的大小关系。

扇形统计图:能够清晰地表示各部分在总体中所占的百分比及各部分之间的大小关系

七年级上册数学知识点总结归纳

期末考试就要到了,这篇文章我给大家总结归纳了初一上册数学的必考重点,供同学们参考复习,希望大家期末可以取得好成绩。

数轴的知识点

1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

平行线

1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4.判定两条直线平行的方法:

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

有理数

1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

4.有理数的加减法:

(1)先定符号,再算绝对值。

(2)加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

(3)加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

(4)加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(5)a-b=a+(-b)减去一个数,等于加这个数的相反数。

5.有理数的加减乘除混合运算法则

(1)先乘方,再乘除,最后加减。

(2)同级运算,从左到右依次进行。

(3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

6.有理数的乘法:

(1)两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数与0相乘,积为0.例:0×1=0

(3)乘积为一的两个有理数互为倒数,0没有倒数。

(4)几个不等于0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负数;当负因数有偶数个数时,积为正数。并把其绝对值相乘。