初二期末考试即将来临,为了能让同学们更加高效的复习,下面我整理了初二数学上册知识点归纳,供各位考生参考。
三角形知识概念
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:
(1)三角形的内角和:三角形的内角和为180°
(2)三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于·180°
(4)多边形的外角和:多边形的外角和为360°
(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。
位置与坐标
1、确定位置
在平面内,确定一个物体的位置一般需要两个数据。
2、平面直角坐标系
①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。
③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。
④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。
⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应。
3、轴对称与坐标变化
关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
数据的分析
1、平均数
①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。
2、中位数与众数
①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
②一组数据中出现次数最多的那个数据叫做这组数据的众数。
③平均数、中位数和众数都是描述数据集中趋势的统计量。
④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。
⑥各个数据重复次数大致相等时,众数往往没有特别意义。
3、从统计图分析数据的集中趋势
4、数据的离散程度
①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。
②数学上,数据的离散程度还可以用方差或标准差刻画。
③方差是各个数据与平均数差的平方的平均数。
④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。
⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
数学知识点八年级
【统计的初步认识】
1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充内容:
1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
课后练习
1.统计学的基本涵义是(D)。
A.统计资料
B.统计数字
C.统计活动
D.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。
2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。
A.每一个国有工业企业
B.该地区的所有国有工业企业
C.该地区的所有国有工业企业的生产经营情况
D.每一个企业
3.要了解20个学生的学习情况,则总体单位是(C)。
A.20个学生
B.20个学生的学习情况
C.每一个学生
D.每一个学生的学习情况
4.下列各项中属于数量标志的是(B)。
A.性别
B.年龄
C.职称
D.健康状况
初二下册数学知识点 总结
【抽样调查】
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。
课后练习
1.抽样成数是一个(A)
A.结构相对数B.比例相对数C.比较相对数D.强度相对数
2.成数和成数方差的关系是(C)
A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大
C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大
3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)
A.全面调查B.非全面调查C.一次性调查D.经常性调查
4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)
A.甲产品大B.乙产品大C.相等D.无法判断
数学知识点八年级
菱形的判定定理
1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。
八年级数学知识点相关 文章 :
★ 人教版八年级数学上册知识点总结
★ 八年级数学知识点整理归纳
★ 八年级数学知识点总结
★ 初二数学上册知识点总结
★ 初二数学知识点归纳
★ 初二数学知识点复习整理
★ 八年级数学上知识点归纳
★ 八年级数学上册知识点归纳
★ 八年级上册数学知识点整理
因为有知识,我们上了太空,我们延长了人均寿命。更因为有知识,我们超出生死,不再疑惑。下面给大家分享一些关于初二数学上册知识点 总结 归纳,希望对大家有所帮助。
初二数学上册知识点总结:二元一次方程组
1、认识二元一次方程组
① 含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程
② 共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组
③ 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解
2、求解二元一次方程组
① 将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的 方法 称为代入消元法,简称代入法
② 通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法
3、应用二元一次方程组
① 鸡兔同笼
4、应用二元一次方程组
① 增减收支
5、应用二元一次方程组
① 里程碑上的数
6、二元一次方程组与一次函数
① 一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线
② 一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标
7、用二元一次方程组确定一次函数表达式
① 先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。
8、三元一次方程组
① 在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程
② 像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组
③ 三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.
初二数学上册知识点总结:数据的分析
1、平均数
① 一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。
② 在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数
2、中位数与众数
① 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数
② 一组数据中出现次数最多的那个数据叫做这组数据的众数
③ 平均数、中位数和众数都是描述数据集中趋势的统计量
④ 计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤ 中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息
⑥ 各个数据重复次数大致相等时,众数往往没有特别意义
3、从统计图分析数据的集中趋势
4、数据的离散程度
① 实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量
② 数学上,数据的离散程度还可以用方差或标准差刻画
③ 方差是各个数据与平均数差的平方的平均数
④ 其中是x1 ,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根
⑤ 一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
初二数学上册知识点总结:平行线的证明
1、为什么要证明
① 实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明
2、定义与命题
① 证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义
② 判断一件事情的 句子 ,叫做命题
③ 一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么.....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论
④ 正确的命题称为真命题,不正确的命题称为假命题
⑤ 要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例
⑥ 欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断
⑦ 演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明
a. 本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线
b. 两点之间线段最短
c. 同一平面内,过一点有且只有一条直线与已知直线垂直
d. 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)
e. 过直线外一点有且只有一条直线与这条直线平行
f. 两边及其夹角分别相等的两个三角形全等
g. 两角及其夹边分别相等的两个三角形全等
h. 三边分别相等的两个三角形全等
⑧ 此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据
⑨ 定理:同角(等角)的补角相等
同角(等角)的余角相等
三角形的任意两边之和大于第三边
对顶角相等
3、平行线的判定
① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行
② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。
4、平行线的性质
① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等
② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等
③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补
④ 定理:平行于同一条直线的两条直线平行
5、三角形内角和定理
① 三角形内角和定理:三角形的内角和等于180°
② 定理:三角形的一个外角等于和它不相邻的两个内角的和
定理:三角形的一个外角大于任何一个和它不相邻的内角
③ 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。
初二数学上册知识点总结归纳相关 文章 :
★ 初二数学上册知识点总结
★ 人教版八年级数学上册知识点总结
★ 人教版八年级数学上册知识点总结
★ 初二上册数学知识点总结
★ 八年级上册数学的知识点归纳
★ 初二上册数学知识点总结与学习方法
★ 八年级上册数学知识点总结
★ 八年级上册数学知识点总结与八年级数学学习技巧
★ 初二数学上册知识点的测试题汇总
★ 初二数学上册三角形及四边形重点知识归纳
初二数学上册知识点总结
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。以下是我整理的关于初二数学上册知识点总结,希望大家认真阅读!
第十一章 三角形
一、知识结构图
边
与三角形有关的线段 高
中线
角平分线
三角形的内角和 多边形的内角和
三角形的外角和 多边形的外角和
二、知识定义
三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
平面镶嵌:用一些不重叠摆放的多边形把平面的`一部分完全覆盖,叫做用多边形覆盖平面。
三、公式与性质
三角形的内角和:三角形的内角和为180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的角和:多边形的外角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有条对角线。
第十二章 全等三角形
一、全等三角形
1.定义:能够完全重合的两个三角形叫做全等三角形。
2.全等三角形的性质
①全等三角形的对应边相等、对应角相等。
②全等三角形的周长相等、面积相等。
③全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定
边边边:三边对应相等的两个三角形全等(可简写成“SSS”)
边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)
角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)
角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)
斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)
4.证明两个三角形全等的基本思路:
二、角的平分线:
1.(性质)角的平分线上的点到角的两边的距离相等
2.(判定)角的内部到角的两边的距离相等的点在角的平分线上
三、学习全等三角形应注意以下几个问题:
1.要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;
2.表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
3.有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等;
4.时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”
;