二分法是数学领域术语。
二分法即,对于区间[a,b]上连续不断且f(a)·f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。
算法:当数据量很大适宜采用该方法。采用二分法查找时,数据需是排好序的。
基本思想:假设数据是按升序排序的,对于给定值key,从序列的中间位置k开始比较,
如果当前位置arr[k]值等于key,则查找成功;
若key小于当前位置值arr[k],则在数列的前半段中查找,arr[low,mid-1];
若key大于当前位置值arr[k],则在数列的后半段中继续查找arr[mid+1,high],
直到找到为止,时间复杂度:O(log(n))。
C++语言中的二分查找法:
基本思想:假设数据是按升序排序的,对于给定值x,从序列的中间位置开始比较,如果当前位置值等于x,则查找成功;若x小于当前位置值,则在数列的前半段中查找;若x大于当前位置值则在数列的后半段中继续查找,直到找到为止。
假如有一组数为3,12,24,36,55,68,75,88要查给定的值24.可设三个变量front,mid,end分别指向数据的上界,中间和下界,mid=(front+end)/2。
1、开始令front=0(指向3),end=7(指向88),则mid=3(指向36)。因为midx,故应在前半段中查找。
2、令新的end=mid-1=2,而front=0不变,则新的mid=1。此时xmid,故确定应在后半段中查找。
3、令新的front=mid+1=2,而end=2不变,则新的mid=2,此时a[mid]=x,查找成功。
如果要查找的数不是数列中的数,例如x=25,当第三次判断时,xa[mid],按以上规律,令front=mid+1,即front=3,出现frontend的情况,表示查找不成功。
二分法的思想为:首先确定有根区间,将区间二等分,通过判断F(x)的符号,逐步将有根区间缩小,直至有根区间足够小,便可求出满足精度要求的近似根。
对于在区间{a,b}上连续不断,且满足f(a)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间二等分,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
用二分法的条件f(a)f(b)0表明二分法求函数的近似零点都是指变号零点。
一般地,对于函数f(x),如果存在实数c,当x=c时f(c)=0,那么把x=c叫做函数f(x)的零点。
解方程即要求f(x)的所有零点。
先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2],
现在假设f(a)0,f(b)0,ab
①如果f[(a+b)/2]=0,该点就是零点,
如果f[(a+b)/2]0,则在区间((a+b)/2,b)内有零点,(a+b)/2=a,从①开始继续使用
中点函数值判断。
如果f[(a+b)/2]0,则在区间(a,(a+b)/2)内有零点,(a+b)/2=b,从①开始继续使用
中点函数值判断。
这样就可以不断接近零点。
通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。
给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下:
1
确定区间[a,b],验证f(a)·f(b)0,给定精确度ξ.
2
求区间(a,b)的中点c.
3
计算f(c).
(1)
若f(c)=0,则c就是函数的零点;
(2)
若f(a)·f(c)0,则令b=c;
(3)
若f(c)·f(b)0,则令a=c.
4
判断是否达到精确度ξ:即若┃a-b┃ξ,则得到零点近似值a(或b),否则重复2-4.
一般地,对于函数f(x),如果存在实数c,当x=c是f(c)=0,那么把x=c叫做函数f(x)的零点。
解方程即要求f(x)的所有零点。
先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2],
现在假设f(a)0,f(b)0,ab
如果f[(a+b)/2]=0,该点就是零点,
如果f[(a+b)/2]0,则在区间((a+b)/2,b)内有零点,按上述方法在求该区间中点的函数值,这样就可以不断接近零点
如果f[(a+b)/2]0,同上
通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。
由于计算过程的具体运算复杂,但每一步的方式相同,所以可通过编写程序来运算。