数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.下面我给大家分享一些六年级上册数学第二单元知识,希望能够帮助大家,欢迎阅读!
六年级上册数学第二单元知识
一、确定物体位置的条件
在平面上确定物体的位置,首先要确定观测点,然后要找准方向和角度(方位角),最后要确定距离。
二、在平面图上标出物体位置的 方法 :
1、观测点和方位角;
2、从观测点沿着所确定的方向画一条射线;
3、根据单位长度的线段所表示的地 面相 对距离把实际距离换算为图上长度;
4、用直尺画出图上长度,并标出被观测点的位置及名称。
确定物体位置的条件:方向和距离,两个条件缺一不可。
三、位置关系的相对性。
描述两个物体或地点位置关系的时候会有两种方式,如“上海在北京的南偏东约30°的方向上”“北京在上海的北偏西约30°的方向上”。角度不变,方向正好相反。南偏东对应北偏西(不能说成西偏北)
因为东西、南北正好相对,所以东偏南的相对位置是西偏北。
四、描述路线图的方法
先按行走路线确定观测点,再确定行走的方向和路程.即每走一步,都要说清从哪里出发,向什么方向走多远的距离。每走一步,都换一个新的观测点。
五、绘制路线图的方法
1、确定方向标和单位长度
2、确定起点的位置
3、根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为观测点)外,其余每段都要以前一段的终点为观测点。
4、以谁为观测点,就以谁为中心画出"十"字方向标,然后判断下一点的方向和距离。
每画一段路都要重新确定观测点、方向和距离。
北师大 六年级数学 第二单元知识点
分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
①如果是同一级运算,按照从左到右的顺序依次计算。
②如果是分数连乘,可先进行约分,再进行计算。
③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。
2、解决问题
(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:
第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。
第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。
(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”
第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。
第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。
(3)用方程解决稍复杂的分数应用题的步骤:
①要找准单位“1”。
②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。
③设未知量为X,根据等量关系式,列出方程。
④解答方程。
(4)要记住以下几种算术解法解应用题:
①对应数量÷对应分率=单位“1” 的量
②求一个数的几分之几是多少,用乘法计算。
③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。
3、要记住以下的解方程定律:
加数+加数=和
加数=和-另一个加数
被减数-减数=差
被减数=差+减数
减数=被减数-差
因数×因数=积
因数=积÷另一个因数
被除数÷除数=商
被除数=商×除数
除数=被除数÷商
4、绘制简单线段图的方法
分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。
绘制步骤:
①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。
②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。
③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。
④问题所求要标出“?”号和单位。
5、补充知识点
分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
分数乘整数:数形结合、转化化归
倒数:乘积是1的两个数叫做互为倒数。
分数的倒数
找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12 ,12是1/12的倒数。
小数的倒数
普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1 用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
分数除法:分数除法是分数乘法的逆运算。
分数除法计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
数学的六大方法技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的 笔记本 ,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会 总结 :
“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。,这可是大考复习时最有用的资料,千万不可疏忽。
六年级上册数学第二单元知识点相关 文章 :
★ 六年级上册数学知识点
★ 六年级上册数学知识点整理归纳
★ 六年级数学上册知识点复习
★ 六年级数学上册知识点总结
★ 六年级数学上册《百分数》知识点总结
★ 六年级数学上册知识人教版
★ 六年级数学期末复习知识点汇总
★ 六年级数学上册知识点复习资料
★ 六年级数学复习要点
★ 小学六年级数学学习方法和技巧大全
读书不是为了考试,本来考试是一件正确的事情,它是用来检查我们对学习过的知识是否懂了,懂了多少 多深 分数只是反映了我们对学过知识的掌握程度,下面我给大家分享一些 六年级数学 知识点,希望能够帮助大家!
六年级上册数学知识点大全
六年级上册数学知识 总结 1
圆
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率(π) = 周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径= πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)
S圆 =πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积 =大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
六年级上册数学知识总结2
比
比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的 方法 来化简。也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法:被除数除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数:分子 分数线 (—)分母(不能为0) 分数的基本性质 分数是一个数
比:前项比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用
1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 乙=甲÷几分之几 几分之几=甲÷乙
(2)甲比乙多(少)几分之几?
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。(3)找等量关系。(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
六年级上册数学知识总结3
分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b 1时,ca。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b1时,ca(b≠0)。 p=""
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、什么是速度?
速度是单位时间内行驶的路程。
速度=路程÷时间 时间=路程÷速度 路程=速度×时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙 少:(乙-甲)÷乙
六年级上册数学知识总结4
百分数(一)
一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和 教育 储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
六年级上册数学知识总结5
扇形统计图的意义
1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:
(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
数学广角--数与形
2+4+6+8+10+12+14+16+18+20=(110)
规律:从2开始的n个连续偶数的和等于n×(n+1)。
10×(10+1)=10×11=110
位置与方向(二)
1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物体位置的方法:
(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东--西;南--北;南偏东--北偏西。
六年级上册数学知识点总结相关 文章 :
★ 六年级上册数学知识点整理归纳
★ 六年级数学上册知识点总结
★ 六年级数学期末复习知识点汇总
★ 六年级上册数学知识点
★ 六年级数学上册《百分数》知识点总结
★ 六年级上册数学课本知识点归纳
★ 六年级数学上册知识点复习
★ 小学六年级数学学习方法和技巧大全
★ 六年级数学上册知识人教版
★ 小学六年级数学知识点总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。
人教版小学六年级数学下册知识点
负数
1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3.能借助数轴初步学会比较正数、0和负数之间的大小。
4.像-16、-500、-3/8、-0.4…这样的数叫做负数。
-3/8读作负八分之三。
16,200,3/8,6.3…这样的数叫做正数。正数前面可以加“+”号,也可以省去“+”号。
+6.3读作正六点三。
0既不是正数,也不是负数。
5.16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃
6.如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。
7.在数轴上,从左到右的顺序就是数从小到大的顺序。
0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。
负号后面的数越大,这个数就越小。如:-8-6。
小学6年级 毕业 考试数学重难知识点
行程问题
基本概念:
行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.
基本公式:
路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:
确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追及问题:追及时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法
基本题型:
已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
小学六年级 数学学习方法
学生需要在课堂上做好笔记,用来记录老师讲课重点、补充难题、听课心得等内容,方便日后复习与记忆。而小学数学笔记的记录,很多孩子无法准确掌握,需要下点工夫,找到适合自己的方法。
一、为什么要记笔记?
笔记可以方便日后有重点、不失真地复习。
奥数课堂通常包含大量的信息,涵盖定义、公式、解题技巧等各个方面。大多数同学难以一堂课完全掌握全部内容。尤其我们的课堂还经常包含一些经典的难题、补充题,单凭一次性的记忆无法提供充分的反刍的素材。
二、记笔记要避免的误区
然而,很多同学出于不自信或者对家长的敷衍,为了笔记而笔记——笔记完成就“大功告成”、束之高阁。殊不知:记在自己脑袋里面的知识才是自己的知识,有笔记而无复习正是做笔记的错误。
三、记笔记的形式
你们的 笔记本 内容多吗?平时书包装满的时候,你能够方便的找到笔记本吗?单独阅读笔记的时候,你觉得丰富吗?如果这三个问题你都回答“否”,那么请考虑一下将全部的笔记搬到讲义上去。
笔记一定要方便日后查阅。书写过程中,字迹不要求美观,但是至少直观。
关于某一题的延伸记录在题目旁边,关于一讲的梳理可以放到章节前,补充的题目可以放到章节后,个人心得可以放在页眉页脚。如果有补充随材还可以粘贴或者插入到讲义当中。
简而言之,笔记在形式上的要求就是:用最小的篇幅记录最多的内容,同时分出清晰地层次。
四、记笔记的基本方法
记入笔记的内容一定要经过筛选。每一名学生都有自己独特的笔记需求,相应的它也会有自己的筛选方法。抛开具体的科目、知识点,这里有一些参考标准。
1、内容本身不存在疑问。
我们经常发现部分同学在记录解题方法时抄写错误、或者照搬板书布局,最终他自己都无法清晰地读出正确的解题过程。这样的错误不仅会形成无用的笔记,还可能引导思维走入歧途。
2、重点记录自己不熟悉的内容。
为了照顾大多数、防止遗漏,老师在 总结 的时候通常会往多了讲,以至于同样的几何模型,五年级上学期提到一次、下学期再复习一次、到了六年级还会梳理两次。如果学生不加甄别、反复记录,费时费力不讨好,还容易滋生厌恶。——如果你实在很熟悉,留下一个记号。
3、珍惜自己的心得。
黑板上或讲义上的内容都是老师的知识,不论多么优秀的老师,他无法直接将自己的思路完整的拷贝进入学生的大脑。所以知识的传承需要学生的记录、复习、练习等等。而真正掌握知识点的最重要表现就是产生自己的认识与归纳。
4、记录经典题目。
不论小学、中学还是大学,很多时候学习终究脱离不了题目。如果在某一个角落、一本书当中真的有那么一道题、一段话让你受益匪浅,那么勇敢的记录下来。不要将笔记内容局限在老师所供、讲义所言——它应当帮助记录所有对你重要的内容。
除了这些内容上的筛选,熟练的同学还应该考虑下笔记当中布局与记号。比如,过去老师常使用“△”“.”或者“Ⅱ”来标记相对重要的内容,☆表示最重要的知识点,“→”标记自己的心得,“?”表示自己的疑问等等。这些符号,与红色、黑色墨迹搭配能够形成层次鲜明的内容体系,方便自己的不同的场合下复习想复习的内容。
六年级数学的知识点梳理相关 文章 :
★ 六年级数学知识点梳理
★ 六年级数学期末复习知识点汇总
★ 六年级数学知识点归纳
★ 六年级数学总复习知识点整理(完整版)
★ 六年级上册数学知识点整理归纳
★ 六年级数学的重难点知识总结
★ 六年级数学上册知识点总结
★ 六年级数学上册知识点复习
★ 小学六年级数学知识点总结
★ 六年级下册数学知识点归纳
真正的知识分子该有一副傲骨,不善趋炎附势。这使他们当中绝大多数显得个色,总是鹤立鸡群,混不进人堆里。下面我给大家分享一些六年级上册数学课本知识点归纳,希望能够帮助大家,欢迎阅读!
六年级上册数学课本知识点1
第一单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的 方法 是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b1时,ca。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b1时,ca(b≠0)。 p=""
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1,则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、什么是速度?
速度是单位时间内行驶的路程。
速度=路程÷时间
时间=路程÷速度
路程=速度×时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
六年级上册数学课本知识点2
第二单元位置与方向(二)
1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物体位置的方法:
(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东-西;南-北;南偏东-北偏西。
六年级上册数学课本知识点3
第三单元 分数的除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c,当b1时,ca。 p=""
②除以小于1的数,商大于被除数:a÷b=c,当b1时,ca。(a≠0,b≠0)
③除以等于1的数,商等于被除数:a÷b=c,当b=1时,c=a。
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
(a±b)÷c=a÷c±b÷c
六年级上册数学课本知识点4
第四单元 比
比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比,如:3:4:5读作:3比4比5。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=12÷20=0.6
12∶20读作:12比20。
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法:被除数除号(÷) 除数(不能为0) 商不变性质 除法是一种运算。
分数:分子 分数线 (—)分母(不能为0) 分数的基本性质 分数是一个数。
比:前项比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系。
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用
1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几
乙=甲÷几分之几
几分之几=甲÷乙
(2)甲比乙多(少)几分之几?
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
六年级上册数学课本知识点5
第五单元圆
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π = 周长÷直径≈3.14。
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr。
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径= πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以,圆的面积=圆的周长的一半(πr)×圆的半径(r)。
S圆 =πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积 =大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
六年级上册数学课本知识点归纳相关 文章 :
★ 六年级上册数学知识点整理归纳
★ 六年级数学上册知识点复习
★ 六年级数学上册知识点总结
★ 六年级上册数学知识点
★ 六年级数学上册期末复习纲要
★ 六年级数学上册《百分数》知识点总结
★ 小学六年级数学学习方法和技巧大全
★ 六年级数学上册知识点复习资料
★ 六年级数学上册知识点人教版
★ 六年级数学期末复习知识点汇总
(一)位置统计数学广角 一、位置 原点不同 分为00及11 1、用数对表示列行 2、方向先走列再走行。列东西 行南北 往东、往北走是加往西、往南是减。 3、平移向南北是行变列不变。向东西是列变行不变。点对点平移 4、轴对称左右两边的图形到对称轴的距离相等。 二、统计 1、统计图的区别 1条形统计图表示数量的多少。 2折线统计图表示变化趋势。 3扇形统计图表示部分与总量的关系。 2、扇形统计图 1计算圆心角360°× 2提出问题 注意*单位“1” 三、数学广角鸡兔同笼 1、假设法设鸡求兔设兔求鸡。注意*答容易将鸡的脚数量答成兔的脚数量。 2、方程注意*要设脚多的为x以免出现减出负数。 二计算 一、意义 1、乘法①分数乘整数求几个相同加数的和是多少。 ②分数乘分数求一个数的几分之几是多少。 2、除法已知两个因数的积和其中一个因数求另一个因数的运算。 3、百分数一个数是另一个书的百分之几。 二、法则 1、乘法分子相乘作分子分母相乘作分母能越分的要约分再计算。 2、除法甲数除以乙数等于甲数除以乙数的倒数“0”除外。 三、被除数÷除数=除数分之被除数=被除数除数A÷B=B分之A=A:B(B≠0) 四、变化规律 1、乘法原数×小于1的数原数原数×大于1的数原数 2、除法被除数÷大于1的数被除数被除数÷小于1的数被除数 五、倒数 1、定义乘积是1的两个数互为倒数。 2、找到数1分数分数的分子与分母互换位置。2整数A→1/A0没有倒数1的倒数是1。3小数百分数先将小数百分数化为最简分数再找倒数。 3、真分数的倒数大于1假分数1除外的倒数小于1。
六年级上册数学课堂笔记重点与例题分析
(一)位置,统计,数学广角
一、位置
原点不同 分为(0,0)及(1,1)
1、用数对表示(列,行)
2、方向:先走列,再走行。列(东西) 行(南北) 往东、往北走是加,往西、往南是减。
3、平移:向南北是行变,列不变。向东西是列变,行不变。(点对点平移)
4、轴对称:左右两边的图形到对称轴的距离相等。
二、统计
1、统计图的区别:
(1)条形统计图:表示数量的多少。
(2)折线统计图:表示变化趋势。
(3)扇形统计图:表示部分与总量的关系。
2、扇形统计图
(1)计算圆心角360°×?%
(2)提出问题 注意*:单位“1”
三、数学广角(鸡兔同笼)
1、假设法:设鸡求兔,设兔求鸡。注意*:答容易将鸡的脚数量答成兔的脚数量。
2、方程:注意*:要设脚多的为x,以免出现减出负数。
(二)计算
一、意义
1、乘法:①分数乘整数:求几个相同加数的和是多少。
②分数乘分数:求一个数的几分之几是多少。
2、除法:已知两个因数的积和其中一个因数,求另一个因数的运算。
3、百分数:一个数是另一个书的百分之几。
二、法则
1、乘法:分子相乘作分子,分母相乘作分母,能越分的要约分,再计算。
2、除法:甲数除以乙数等于甲数除以乙数的倒数(“0”除外)。
三、被除数÷除数=除数分之被除数=被除数:除数A÷B=B分之A=A:B(B≠0)
四、变化规律
1、乘法:原数×小于1的数<原数;原数×大于1的数>原数
2、除法:被除数÷大于1的数>被除数;被除数÷小于1的数>被除数
五、倒数
1、定义:乘积是1的两个数互为倒数。
2、找到数(1)分数:分数的分子与分母互换位置。(2)整数:A→1/A(0没有倒数,1的倒数是1)。(3)小数(百分数):先将小数(百分数)化为最简分数,再找倒数。
3、真分数的倒数大于1;假分数(1除外)的倒数小于1。
(三)比
一、定义
1、比:两个数相除又叫做两个数的比,代表两个数之间的关系。
2、前项与后项:在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
3、比值:比的前项除以后项所得的商叫做比值。
二、比的基本性质
1、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不便。
三、化简比与求比值
1、化简比要化成最简单的整数比。
2、化简比与求比值最好写成分数形式。
四、比赛中的比分只是一种积分方式,不是比。
(四)应用题
一、解题步骤
第一步:找单位“1”:A最靠近分率的;B“比、是、占”后面的;C“提高、降低、涨、跌……”都是原来。
第二步:找关键句,补充完整。
第三步:找等量关系。
第四步:列式解答。
二、例题分析
条件:男生32人,女生24人,共有168本本子。
1、 男生比女生多几分之几?
(男-女)÷男 (32-24)÷24
2、女生比男生少几分之几?
(男-女)÷女 (32-24)÷32
3、男生占全班的几分之几?
男÷(女+男) 32÷(32+24)
4、女生占全班的几分之几?
女÷(女+男) 24÷(24+32)
5、男生与女生各可得几本?
168÷(32+24)=3(本)3×32=96(本)3×24=72(本)
先求每份数,再求几份数。
6、归一应用题,求谁谁当被除数。
300kg花生,可榨油20kg。
① 每千克花生可榨油多少千克?20÷300=1/15(kg)
②每千克油需要多少千克花生?300÷20=15(kg)
三、百分率公式
1、学生的出勤率=实际出勤人数/应出勤人数×100%
2、小麦的出粉率=面粉重量/小麦重量×100%
3、花生的出油率=油的重量/花生重量×100%
4、植物的成活率=成活棵树/总棵树×100%
5、射击的命中率=命中次数/射击总次数×100%
6、盐水的含盐率=盐重/盐水重×100%
7、产品的合格率=合格产品/产品数×100%
四、利息与可得利息
1、利息=本金×利率×时间
2、可得利息=本金×利率×时间×(1-5%)
(五)圆
一、概念与特征
1、概念:圆中心的一点叫做圆心,一般用字母o表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。π≈3.14 π=3.1415926……
圆的周长与它的直径的比值是固定的数叫做圆周率。
1、 特征
①圆有无数条对称轴,半圆只有一条。
②在同一个圆内,有无数半径、无数条直径。
③在同一个圆内,所有的半径长度都相等,所有的直径也相等。
① 在同一个圆内,直径长度是半径的2倍,半径的长度是直径长度的1/2(0.5)倍。
d=2r r=1/2d
二、公式
①d=2r ②r=1/2d ③c圆=πd=2πr ④s圆=πr ² ⑤s环=π(R²-r²)
⑥半圆弧=πr ⑦半圆=πr+d=π+2r
三、作图
1、画圆:①定圆心 ②量出半径 ③画图 ④画出o、r、d ⑤标出o、r、d
2、正方形内画圆:①圆心在对角线的交点上 ②半径为正方形边长的一半
③正方形面积与圆面积比 200:175
四、1、半径比=直径比=周长比。2、面积比=半径比的平方。
五、π≈3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84
7π=21.98 8π=15.12 9π=28.26
4²π=16π=50.24 5²π=25π=78.5 6²π=36π=113.04 7²π=49π=153.86
8²π=64π=200.96 9²π=81π=254.34