一)、数制
计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径、节省设备等优点,为了便于描述,又常用八、十六进制作为二进制的缩写。
一般计数都采用进位计数,其特点是:
(1)逢N进一,N是每种进位计数制表示一位数所需要的符号数目为基数。
(2)采用位置表示法,处在不同位置的数字所代表的值不同,而在固定位置上单位数字表示的值是确定的,这个固定位上的值称为权。
在计算机中:D7 D6 D5 D4 D3 D2 D1 D0 只有两种0和1
8 4 2 1
二)、数制转换
不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。也就是说,若转换前两数相等,转换后仍必须相等。
有四进制
十进制:有10个基数:0 ~~ 9 ,逢十进一
二进制:有2 个基数:0 ~~ 1 ,逢二进一
八进制:有8个基数:0 ~~ 7 ,逢八进一
十六进制:有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一
1、数的进位记数法
N=a n-1*p n-1+a n-2*p n-2+…+a2*p2+a1*p1+a0*p0
2、十进制数与P进制数之间的转换
①十进制转换成二进制:十进制整数转换成二进制整数通常采用除2取余法,小数部分乘2取整法。例如,将(30)10转换成二进制数。
将(30)10转换成二进制数
2| 30 ….0 ----最右位
2 15 ….1
2 7 ….1
2 3 ….1
1 ….1 ----最左位
∴ (30)10=(11110)2
将(30)10转换成八、十六进制数
8| 30 ……6 ------最右位
3 ------最左位
∴ (30)10 =(36)8
16| 30 …14(E)----最右位
1 ----最左位
∴ (30)10 =(1E)16
3、将P进制数转换为十进制数
把一个二进制转换成十进制采用方法:把这个二进制的最后一位乘上20,倒数第二位乘上21,……,一直到最高位乘上2n,然后将各项乘积相加的结果就它的十进制表达式。
把二进制11110转换为十进制
(11110)2=1*24+1*23+1*22+1*21+0*20=
=16+8+4+2+0
=(30)10
把一个八进制转换成十进制采用方法:把这个八进制的最后一位乘上80,倒数第二位乘上81,……,一直到最高位乘上8n,然后将各项乘积相加的结果就它的十进制表达式。
把八进制36转换为十进制
(36)8=3*81+6*80=24+6=(30)10
把一个十六进制转换成十进制采用方法:把这个十六进制的最后一位乘上160,倒数第二位乘上161,……,一直到最高位乘上16n,然后将各项乘积相加的结果就它的十进制表达式。
把十六制1E转换为十进制
(1E)16=1*161+14*160=16+14=(30)10
3、二进制转换成八进制数
(1)二进制数转换成八进制数:对于整数,从低位到高位将二进制数的每三位分为一组,若不够三位时,在高位左面添0,补足三位,然后将每三位二进制数用一位八进制数替换,小数部分从小数点开始,自左向右每三位一组进行转换即可完成。例如:
将二进制数1101001转换成八进制数,则
(001 101 001)2
| | |
( 1 5 1)8
( 1101001)2=(151)8
(2)八进制数转换成二进制数:只要将每位八进制数用三位二进制数替换,即可完成转换,例如,把八进制数(643.503)8,转换成二进制数,则
(6 4 3 . 5 0 3)8
| | | | | |
(110 100 011 . 101 000 011)2
(643.503)8=(110100011.101000011)2
4、二进制与十六进制之间的转换
(1)二进制数转换成十六进制数:由于2的4次方=16,所以依照二进制与八进制的转换方法,将二进制数的每四位用一个十六进制数码来表示,整数部分以小数点为界点从右往左每四位一组转换,小数部分从小数点开始自左向右每四位一组进行转换。
(2)十六进制转换成二进制数
如将十六进制数转换成二进制数,只要将每一位十六进制数用四位相应的二进制数表示,即可完成转换。
例如:将(163.5B)16转换成二进制数,则
( 1 6 3 . 5 B )16
| | | | |
(0001 0110 0011. 0101 1011 )2
(163.5B)16=(101100011.01011011)2
二进制数与十进制数如何转换:
(1)
二进制数—→十进制数
对于较小的二进制数:
对于较大的二进制数:
方法1:各位上的数乘权求和例如:
(101101)2=1×25+0×24+1×23+1×22+0×21+1×20=45
(1100.1101)2=1×23+1×22+0×21+0×20+1×2-1+1×2-2+0×2-3+1×2-4=12.8125
方法2:任何一个二进制数可转化成若干个100…0的数相加的总和例如:
(101101)2=(100000)2+(1000)2+(100)2+(1)2
而这种100…00形式的二进制数与十进制数有如下关联:1后有n个0,则这个二进数所对应的十进制数为2n。
所以:(101101)2=(100000)2+(1000)2+(100)2+(1)2=25+23+22+20=45
首先从原文中顺序读出一字符,取得其ASCII码值,再把此值转换成二进制数,同时取得与此字符对应的密码字符的二进制值,把它们进行异或运算,然后把所得结果再转换成十进制数,用CHR()函数即可据此值产生一字符,也就是密文。
将二进制、八进制、十六进制转换为十进制
二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。
假设当前数字是 N 进制,那么:
对于整数部分,从右往左看,第 i 位的位权等于Ni-1
对于小数部分,恰好相反,要从左往右看,第 j 位的位权为N-j。
更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是 1,那么它所表示的数值大小就是该位的位权。
1) 整数部分
例如,将八进制数字 53627 转换成十进制:
53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)
从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… 第n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。
注意,这里我们需要以十进制形式来表示位权。
再如,将十六进制数字 9FA8C 转换成十进制:
9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)
从右往左看,第1位的位权为 160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… 第n位的位权就为 16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。
将二进制数字转换成十进制也是类似的道理
11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)
从右往左看,第1位的位权为 20=1,第2位的位权为 21=2,第3位的位权为 22=4,第4位的位权为 23=8,第5位的位权为 24=16 …… 第n位的位权就为 2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。
2) 小数部分
例如,将八进制数字 423.5176 转换成十进制:
423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)
小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… 第m位的位权就为 8-m。
再如,将二进制数字 1010.1101 转换成十进制:
1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)
小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… 第m位的位权就为 2-m。
更多转换成十进制的例子:
二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)
二进制:101.1001 = 1×22 + 0×21 + 1×20 + 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)
八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)
八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)
十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)
将十进制转换为二进制、八进制、十六进制
将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。
1) 整数部分
十进制整数转换为 N 进制整数采用“除 N 取余,逆序排列”法。具体做法是:
将 N 作为除数,用十进制整数除以 N,可以得到一个商和余数;
保留余数,用商继续除以 N,又得到一个新的商和余数;
仍然保留余数,用商继续除以 N,还会得到一个新的商和余数;
……
如此反复进行,每次都保留余数,用商接着除以 N,直到商为 0 时为止。
把先得到的余数作为 N 进制数的低位数字,后得到的余数作为 N 进制数的高位数字,依次排列起来,就得到了 N 进制数字。
下图演示了将十进制数字 36926 转换成八进制的过程:
从图中得知,十进制数字 36926 转换成八进制的结果为 110076。
下图演示了将十进制数字 42 转换成二进制的过程:
从图中得知,十进制数字 42 转换成二进制的结果为 101010。
2) 小数部分
十进制小数转换成 N 进制小数采用“乘 N 取整,顺序排列”法。具体做法是:
用 N 乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;
将积的整数部分取出,再用 N 乘以余下的小数部分,又得到一个新的积;
再将积的整数部分取出,继续用 N 乘以余下的小数部分;
……
如此反复进行,每次都取出整数部分,用 N 接着乘以小数部分,直到积中的小数部分为 0,或者达到所要求的精度为止。
把取出的整数部分按顺序排列起来,先取出的整数作为 N 进制小数的高位数字,后取出的整数作为低位数字,这样就得到了 N 进制小数。
下图演示了将十进制小数 0.930908203125 转换成八进制小数的过程:
从图中得知,十进制小数 0.930908203125 转换成八进制小数的结果为 0.7345。
下图演示了将十进制小数 0.6875 转换成二进制小数的过程:
从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011。
如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:
十进制数字 36926.930908203125 转换成八进制的结果为 110076.7345;
十进制数字 42.6875 转换成二进制的结果为 101010.1011。
注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:
十进制 0.51 对应的二进制为 0.100000101000111101011100001010001111010111...,是一个循环小数;
十进制 0.72 对应的二进制为 0.1011100001010001111010111000010100011110...,是一个循环小数;
十进制 0.625 对应的二进制为 0.101,是一个有限小数。
二进制和八进制、十六进制的转换
其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。
1) 二进制整数和八进制整数之间的转换
二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:
从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674。
八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:
从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011。
2) 二进制整数和十六进制整数之间的转换
二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:
从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C。
十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:
从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110。
由于在C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。
总结
本节前面两部分讲到的转换方法是通用的,任何进制之间的转换都可以采用,只是有时比较麻烦而已。二进制和八进制、十六进制之间的转换有非常简洁的方法,所以没有采用前面的方法。
1、8进制换成10进制
其方法与二进制转换成十进制差不多:按权相加法,即将八进制每位上的数乘以位权,然后将得出来的数再加在一起。
例如将八进制213转换成十进制是139:
2、10进制换成8进制
方法一:采用除8取余法
每次将整数部分除以8,余数为该位权上的数,商继续除以8,余数又为上一个位权上的数,然后以此类推一直下去,直到商为零,最后从最后一个余数向前排列就可以了。
例如将10进制136转换成8进制是210:
方法二:先采用十进制化二进制的方法,再将二进制数化为八进制数
例如将10进制136转换成8进制,先将10进制136转换成2进制是10001000,采用"除2取余,逆序排列"法:
再讲2进制10001000转换成8进制:整数部份从最低有效位开始,以3位一组,最高有效位不足3位时以0补齐,每一组均可转换成一个八进制的值,转换完毕就是八进制的整数。
则2进制10001000转换成8进制是210。
扩展资料
进制也就是进位计数制,是人为定义的带进位的计数方法(有不带进位的计数方法,比如原始的结绳计数法,唱票时常用的“正”字计数法,以及类似的tally mark计数)。
对于任何一种进制---X进制,就表示每一位置上的数运算时都是逢X进一位。 十进制是逢十进一,十六进制是逢十六进一,二进制就是逢二进一,以此类推,x进制就是逢x进位。
十进制
人类天然选择了十进制。
由于人类解剖学的特点,双手共有十根手指,故在人类自发采用的进位制中,十进制是使用最为普遍的一种。成语“屈指可数”某种意义上来说描述了一个简单计数的场景,而原始人类在需要计数的时候,首先想到的就是利用天然的算筹——手指来进行计数。
十进制编码几乎就是数值本身。
数值本身是一个数学上的抽象概念。经过长期的演化、融合、选择、淘汰,系统简便、功能全面的十进制计数法成为人类文化中主流的计数方法,经过基础教育的训练,大多数的人从小就掌握了十进制计数方法。
盘中放了十个苹果,通过数苹果我们抽象出来“十”这一数值,它在我们的脑海中就以“10”这一十进制编码的形式存放和显示,而不是其它的形式。从这一角度来说,十进制编码几乎就是数值本身。
十进制的基数为10,数码由0-9组成,计数规律逢十进一。
参考资料来源:百度百科:进制
十六进制的换算规则是:
十进制对应的16进制数
0=0
1=1
2=2
...
9=9
10=A
11=B
12=C
13=D
14=E
15=F
16=10
17=12
...
以此类推