1.一个圆锥的体积是45立方厘米,如果它的底面半径缩小为原来的三分之一,高扩大为原来的2倍,它的体积是多少?
2.一个直角三角形的两条直角边分别长5cm、12cm,将这个直角三角形以长度为12cm的直角边旋转一周,所得图形的体积是多少?
3.一个直角三角形的三条边分别长3cm、4cm、5cm,将这个直角三角形以长度为3cm的直角边旋转一周,所得图形的表面积是多少?
4.把一块半径为10cm的圆形铁皮去掉四分之一圆后,做成一个圆锥形的烟筒帽,求此烟筒帽的底面半径。
5.在一个底面半径为3cm,高为4cm的圆柱中挖去一个最大的圆锥体,剩下部分的表面积是多少?
1、分析:底面半径缩小为原来的三分之一,底面积缩小为原来的九分之一,高扩大为原来的2倍,它的体积是原来的1/9×2倍。
解:45×(1/3)²×2=10(立方厘米)
2、分析:绕长度为12cm的直角边旋转,会得到一个圆锥,高是12cm,底面半径是5cm。
解:1/3×3.14×5²×12=314(立方厘米)
3、分析:以长度为3cm的直角边旋转,会得到一个圆锥,高是3cm,底面半径是4cm,。
解:底面积=3.14×4²=50.24(平方厘米)
侧面积=3.14×5²×【(2×3.14×4)÷(2×3.14×5)】
=62.8(平方厘米)
表面积=50.24+62.8=113.04(平方厘米)
4、分析:圆形铁皮去掉四分之一圆,剩下的弧长是3/4圆的周长,就是圆锥底面周长,由此可求。
解:2×3.14×10×3/4÷3.14÷2=7.5(厘米)
分析:半径为3cm,高为4cm,斜边为5cm.
解: 圆锥的侧面积=3.14×5²×【(2×3.14×3)÷(2×3.14×5)】
=47.1(平方厘米)
圆柱的侧面积=2×3.14×3×4
=75.36(平方厘米)
圆柱的底面积=3.14×3²=28.26(平方厘米)
剩下部分的表面积=47.1+75.36+28.26=150.72(平方厘米)
例1.已知:△ABC中,∠B=2∠C,AD是高
求证:DC=AB+BD
分析一:用分解法,把DC分成两部分,分别证与AB,BD相等。
可以高AD为轴作△ADB的对称三角形△ADE,再证EC=AE。
∵∠AEB=∠B=2∠C且∠AEB=∠C+∠EAC,∴∠EAC=∠C
辅助线是在DC上取DE=DB,连结AE。
分析二:用合成法,把AB,BD合成一线段,证它与DC相等。
仍然以高AD为轴,作出DC的对称线段DF。
为便于证明,辅助线用延长DB到F,使BF=AB,连结AF,则可得
∠ABD=2∠F=2∠C。
例2.已知:△ABC中,两条高AD和BE相交于H,两条边BC和AC的中垂线相交于O,垂足是M,N
求证:AH=2MO, BH=2NO
证明一:(加倍法――作出OM,ON的2倍)
连结并延长CO到G使OG=CO连结AG,BG
则BG∥OM,BG=2MO,AG∥ON,AG=2NO
∴四边形AGBH是平行四边形,
∴AH=BG=2MO,BH=AG=2NO
证明二:(折半法――作出AH,BH的一半)
分别取AH,BH的中点F,G连结FG,MN
则FG=MN=
AB,FG∥MN∥AB
又∵OM∥AD,
∴∠OMN=∠HGF(两边分别平行的两锐角相等)
同理∠ONM=∠HFG∴△OMN≌△HFG……
例3.
已知:在正方形ABCD中,点E在AB上且CE=AD+AE,F是AB的中点
求证:∠DCE=2∠BCF
分析:本题显然应着重考虑如何发挥CE=AD+AE条件的作用,如果只想用加倍法或折半法,则脱离题设的条件,难以见效。
我们可将AE(它的等量DG)加在正方形边CD的延长线上(如左图)也可以把正方形的边CD(它的等量AG)加在AE的延长线上(如右图)后一种想法更容易些。
辅助线如图,证明(略)自己完成
例4.已知:△ABC中,∠B和∠C的平分线相交于I,
求证:∠BIC=90
+
∠A
证明一:(由左到右)
∠BIC=180
-(∠1+∠2)=180
-
(∠ABC+∠ACB)
=180
-
(∠ABC+∠ACB+∠A)+
∠A
=90
+
∠A
证明二:(左边-右边=0)
∠BIC-(90
+
∠A)
=180
-
(∠ABC+∠ACB)-90
-
∠A
=90
-
(∠ABC+∠ACB+∠A)=……
证明三:(从已知的等式出发,进行恒等变形)
∵∠A+∠ABC+∠ACB=180
∴∠A=180
-(∠ABC+∠ACB)
∠A=90
-
(∠ABC+∠ACB)
90
+
∠A=180
-
(∠ABC+∠ACB),即∠BIC=90
+
∠A
1、 两个男孩各骑一辆自行车,从相距2o英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1o英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2o英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼(john von neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道
2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.
3、 一架飞机从a城飞往b城,然后返回a城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从a城到b城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从a城飞往b城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从a城飞往b城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、 《孙子算经》是唐初作为“算学”教科书的的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。
6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=x=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=x=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。
7.abcd乘9=dcba
a=? b=? c=? d=?
答案:d=9,a=1,b=0,c=8
1089*9=9801
8、漆上颜色的正方体
设想你有一罐红漆,一罐蓝漆,以及大量同样大小的立方体木块。你打算把这些立方体的每一面漆成单一的红色或单一的蓝色。例如,你会把一块立方体完全漆成红色。第二块,你会决定漆成3面红3面蓝。第三块或许也是3面红3面蓝,但是各面的颜色与第二块相应各面的颜色不完全相同。
按照这种做法,你能漆成多少互不相同的立方体?如果一块立方体经过翻转,它各面的颜色与另一块立方体的相应各面相同,这两块立方体就被认为是相同的。
答案总共漆成10块不同的立方体。
9.老人展转病榻已经几个月了,他想,去见上帝的日子已经不远了,便把孩子们叫到床前,铺开自己一生积蓄的钱财,然后对老大说:
“你拿去100克朗吧!”
当老大从一大堆钱币中,取出100克朗后,父亲又说:
“再拿剩下的十分之一去吧!”
于是,老大照拿了。
轮到老二,父亲说:“你拿去200克朗和剩下的十分之一。”
老三分到300克朗和剩下的十分之一,老四分到400克朗和剩下的十分之一,老五、老六、……都按这样的分法分下去。
在全部财产分尽之后,老人用微弱的声调对儿子们说:“好啦,我可以放心地走了。”
老人去世后,兄弟们各自点数自己的钱数,却发现所有人分得的遗产都相等。
聪明的朋友算一算:这位老人有多少遗产,有几个儿子,每个儿子分得多少遗产。
答案9个儿子,8100克朗财产
10、工资的选择
假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:
(a) 工资以年薪计,第一年为4000美元以后每年加800美元;
(b) 工资以半年薪计,第一个半年为2000美元,以后每半年增加200美元。
你选择哪一种方案?为什么?
答案:第二种方案要比第一种方案好得多
七、(本题满分7分)
23.已知:关于x的方程 有两个实数根 ,关于y的方程 有两个实数根 ,且 。当 时,求m的取值范围。
八、(本题满分8分)
24.已知:AB是半圆O的直径,点C在BA的延长线上运动(点C与点A不重合),以OC为直径的半圆M与半圆O交于点D,∠DCB的平分线与半圆M交于点E。
(1)求证:CD是半圆O的切线(图1);
(2)作EF⊥AB于点F(图2),猜想EF与已有的哪条线段的一半相等,并加以证明;
(3)在上述条件下,过点E作CB的平行线交CD于点N,当NA与半圆O相切时(图3),求∠EOC的正切值。
图1
图2
图3
23.解:∵关于x的方程 有两个实数根x1和x2
解得 ①
∵关于y的方程 有两个实数根
解得0≤n≤4
由根与系数的关系得
整理,得
由二次函数 的图象可得
当 ②
由①、②得m的取值范围是
八、
24.(1)证明:如图1,连结OD,则OD为半圆O的半径
图1
∵OC为半圆M的直径
∴∠CDO=90°
∴CD是半圆O的切线。
(2)猜想: 。
证法三:如图,连结OD、ME,OD、ME相交于点H
∵CE平分∠DCB
∴ ∴ME⊥OD,OH
∵EF⊥CO ∴∠MFE=∠MHO=90°
∵∠EMF=∠OMH,ME=MO
∴△MEF≌△MOH
∴EF=OH ∴
(3)解:如图3,延长OE交CD于点K
图3
设OF=x,EF=y,则OA=2y
∵NE//CB,EF⊥CB,NA切半圆O于点A
∴四边形AFEN是矩形
∴
同(2)证法一,得E是OK的中点
∴N是CK的中点
∴Rt△CEF∽Rt△EOF
∴
∴
解得
∴tan∠EOC=3
25.(1)解:∵抛物线 与x轴交于A、B两点
∴关于x的方程 有两个不相等的实数根
解得
∵点A在点B的左边,且m0,∴A(-m,0),B(2m,0)
解法二:如图2,过点O作OG//AC交BE于点G
图2
∴△CED∽△OGD ∴
∵DC=DO ∴CE=OG
∵OG//AC ∴△BOG∽△BAE ∴
∵OB=2m,AB=3m ∴
(3)解法一:如图3
图3
∵点C在抛物线上(与点A不重合),C、A两点到y轴的距离相等
∴C(m,2m2)
过点E作DC边上的高EP,过点A作OC边上的高AQ
∴EP//AQ
∴△CEP∽△CAQ
∴
∵
∴
解得m=2
∴抛物线的解析式为
点C的坐标为(2,8),点B的坐标为(4,0)
分别过点D、C作x轴的垂线,交x轴于点M、N
∴DM//CN
∵D是OC的中点
∴
∴D点的坐标为(1,4)
设直线BE的解析式为
∴直线BE的解析式为
解法二:如图4,连结OE
图4
∵D是OC的中点
∴
以下同(3)解法一
23.如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:
(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;
(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
24.已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点。
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A。求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长。
25.我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形。请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论。
23.解:(1)FE与FD之间的数量关系为FE=FD。
(2)答:(1)中的结论FE=FD仍然成立。
证法一:如下图,在AC上截取AG=AE,连结FG
因为∠1=∠2,AF为公共边
可证△AEF≌△AGF
所以 ∠AFE=∠AFG,FE=FG
由∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线
可得∠2+∠3=60°
所以∠AFE=∠CFD=∠AFG=60°
所以∠CFG=60°
由∠3=∠4及FC为公共边,可得△CFG≌△CFD
所以FG=FD
所以FE=FD
24.解:(1)根据题意,c=3
所以
解得
所以 抛物线解析式为
(2)依题意可得OA的三等分点分别为(0,1),(0,2)
设直线CD的解析式为
当点D的坐标为(0,1)时,直线CD的解析式为
当点D的坐标为(0,2)时,直线CD的解析式为
(3)如图,由题意,可得
点M关于x轴的对称点为
点A关于抛物线对称轴 的对称点为A'(6,3)
连结A'M'
根据轴对称性及两点间线段最短可知,A'M'的长就是所求
点P运动的最短总路径的长
所以A'M'与x轴的交点为所求E点,与直线x=3的交点为所求F点。
可求得直线A'M'的解析式为
可得E点坐标为(2,0),F点坐标为(3, )
由勾股定理可求出
所以点P运动的最短总路径(ME+EF+FA)的长为 。
25.解:(1)略。
(2)结论:等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和大于或等于一条对角线的长。
已知:四边形ABCD中,对角线AC、BD交于点O,AC=BD
且∠AOD=60°
求证:BC+AD≥AC
证明:过点D作DF‖AC,在DF上截取DE,使DE=AC
连结CE、BE
故∠EDO=60°,四边形ACED是平行四边形
所以△BDE是等边三角形,CE=AD
所以DE=BE=AC
①当BC与CE不在同一条直线上时(如下图)
在△BCE中,有BC+CE>BE
所以BC+AD>AC
②当BC与CE在同一条直线上时(如下图)
则BC+CE=BE
因此 BC+AD=AC
综合①、②,得 BC+AD≥AC。
即等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和大于或等于其中一条对角线的长。
23. 如图,已知
(1)请你在 边上分别取两点 、 ( 的中点除
外),连结 、 ,写出使此图中只存在两对面
积相等的三角形的相应条件,并表示出面积相等的
三角形;
(2)请你根据使(1)成立的相应条件,
证明 .
23. 如图,已知
(1)请你在 边上分别取两点 、 ( 的中点除
外),连结 、 ,写出使此图中只存在两对面
积相等的三角形的相应条件,并表示出面积相等的
三角形;
(2)请你根据使(1)成立的相应条件,
证明 .
解:
(1)相应的条件是: BD = CE ≠ DE ;
两对面积相等的三角形分别是: △ABD和△ACE,△ABE和△ACD .
证法2:如图,分别过点A、E作CB、CA的平行线,两线交于F点,EF与AB交于G点,连结BF. 则四边形FECA是平行四边形,所以 FE = AC,AF = CE.
因为 BD = CE
所以 BD = AF
所以 四边形FBDA是平行四边形
所以 FB = AD
在△AGE中,AG + EG >AE
在△BFG中,BG + FG >FB
可推得 AG + EG + BG + FG >AE + FB
所以 AB + AC >AD + AE
24. 在平面直角坐标系 中,抛物线 经过 , 两点.
(1)求此抛物线的解析式;
(2)设抛物线的顶点为 ,将直线 沿 轴向下平移两个单位得到直线 ,直线 与抛物线的对称轴交于 点,求直线 的解析式;
(3)在(2)的条件下,求到直线 、 、 距离相等的点的坐标.
解:(1)由题意可得
故抛物线的解析式为: .
(2)由 可知抛物线的顶点坐标为B( ),故C( ),且直线 过原点. 设直线 的解析式为 ,则有 . 故直线 的解析式为 .
(3)到直线OB、OC、BC距离相等的点有四个.
由勾股定理可知OB=OC=BC=2,故△OBC为等边三角形,四边形ABCO是菱形,且∠BCO=60°,连接AC交x轴于一点M,易证点M到OB、OC、BC的距离相等. 由点A在∠BCO的平分线上,故它到BC、CO的距离相等均为 ,
同时不难计算出点A到OB的距离为 ,故点A也算其中一个. 同理,不难想到向左、向下可以分别作与ABCO全等的菱形(如图所示,其中△OBC为新菱形的一半),此时必然存在两个点,使得它到直线OB、OC、BC的距离相等.
此四个点的坐标分别为:M( )、A(0,2)、(0,-2)、( ).
25. 我们知道:有两条边相等的三角形叫做等腰三角形,类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在 中,点 、 分别在 、 上,设 、 相交于 ,若 , ,请你写出图中一个与 相等的角,并猜想图中哪个四边形是等对边四边形;
(3)在 中,如果 是不等于60º的锐角,点 、 分别在 、 上,且 ,探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
解:
(1)平行四边形、等腰梯形等满足条件的即可.
(2)与∠A相等的角是∠BOD(或∠COE)
四边形DBCE是等对边四边形.
(3)此时存在等对边四边形DBCE.
证明1:如图,作CG⊥BE于G点,作BF⊥CD交CD的延长线于F点.
∵∠DCB=∠EBC= ∠A,BC为公共边
∴△BGC≌△CFB
∴BF=CG
∵∠BDF=∠ABC+∠DCB=∠ABE+∠EBC+∠DCB=∠ABE+∠A
∠GEC=∠ABE+∠A
∴△BDF≌△CEG
∴BD=CE
故四边形DBCE是等对边四边形.
证明2:如图,在BE上取一点F,使得BF=CD,连接CF.
易证△BCD≌△CBF,故BD=CF,∠FCB=∠DBC.
∵∠CFE=∠FCB+∠CBF=∠DBC+∠CBF=∠ABE+2∠CBF=∠ABE+∠A
∠CEF=∠ABE+∠A
∴CF=CE
∴BF=CE
故四边形DBCE是等对边四边形.