百度文库中搜“学奥数,这里总有一本适合你”,他的文辑里资料很丰富,可以去看看。
中国教育学会中学数学教学专业委员会
“《数学周报》杯”2009年全国初中数学竞赛试题参考答案
一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1.已知非零实数a,b 满足(b+2)的绝对值+(2a-4)的绝对值+根号(a-3)b²+4=2a ,则a+b 等于( ).
(A)-1 (B)0 (C)1 (D)2
【答】C.
解:由题设知a≥3,所以,题设的等式为 ,于是 ,从而 =1.
2.如图,菱形ABCD的边长为a,点O是对角线AC上的一点,且OA=a,OB=OC=OD=1,则a等于( ).
(A) (B) (C)1 (D)2
【答】A.
解:因为△BOC ∽ △ABC,所以 ,即
,
所以, .
由 ,解得 .
3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先
后投掷两次,记第一次掷出的点数为 ,第二次掷出的点数为 ,则使关于x,y的方程组 只有正数解的概率为( ).
(A) (B) (C) (D)
【答】D.
解:当 时,方程组无解.
当 时,方程组的解为
由已知,得 即 或
由 , 的实际意义为1,2,3,4,5,6,可得
共有 5×2=10种情况;或 共3种情况.
又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为 .
4.如图1所示,在直角梯形ABCD中,AB‖DC, . 动点P从点
B出发,沿梯形的边由B→C→D→A运动. 设点P运动的路程为x,△ABP的面积为y. 把y看作x的函数,函数的图象如图2所示,则△ABC的面积为( ).
(A)10 (B)16 (C)18 (D)32
【答】B.
解:根据图像可得BC=4,CD=5,DA=5,进而求得AB=8,故
S△ABC= ×8×4=16.
5.关于x,y的方程 的整数解(x,y)的组数为( ).
(A)2组 (B)3组 (C)4组 (D)无穷多组
【答】C.
解:可将原方程视为关于 的二次方程,将其变形为
.
由于该方程有整数根,则判别式 ≥ ,且是完全平方数.
由 ≥ ,
解得 ≤ .于是
0 1 4 9 16
116 109 88 53 4
显然,只有 时, 是完全平方数,符合要求.
当 时,原方程为 ,此时 ;
当y=-4时,原方程为 ,此时 .
所以,原方程的整数解为
二、填空题(共5小题,每小题7分,共35分)
6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km后报废;若把它安装在后轮,则自行车行驶 3000 km后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .
【答】3750.
解:设每个新轮胎报废时的总磨损量为k,则安装在前轮的轮胎每行驶1 km
磨损量为 ,安装在后轮的轮胎每行驶1km的磨损量为 .又设一对新轮胎交换位置前走了x km,交换位置后走了y km.分别以一个轮胎的总磨损量为等量关系列方程,有
两式相加,得 ,
则 .
7.已知线段AB的中点为C,以点A为圆心,AB的长为半径作圆,在线段AB的延长线上取点D,使得BD=AC;再以点D为圆心,DA的长为半径作圆,与⊙A分别相交于F,G两点,连接FG交AB于点H,则 的值为 .
解:如图,延长AD与⊙D交于点E,连接AF,EF .
由题设知 , ,在△FHA和△EFA中,
,
所以 Rt△FHA∽Rt△EFA,
.
而 ,所以 .
8.已知 是满足条件 的五个不同的整数,若 是关于x的方程 的整数根,则 的值为 .
【答】 10.
解:因为 ,且 是五个不同的整数,所有 也是五个不同的整数.
又因为 ,所以
.
由 ,可得 .
9.如图,在△ABC中,CD是高,CE为 的平分线.若AC=15,BC=20,CD=12,则CE的长等于 .
【答】 .
解:如图,由勾股定理知AD=9,BD=16,所以AB=AD+BD=25 .
故由勾股定理逆定理知△ACB为直角三角形,且 .
作EF⊥BC,垂足为F.设EF=x,由 ,得CF=x,于是BF=20-x.由于EF‖AC,所以
,
即 ,
解得 .所以 .
10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 .
【答】 .
解:设报3的人心里想的数是 ,则报5的人心里想的数应是 .
于是报7的人心里想的数是 ,报9的人心里想的数是 ,报1的人心里想的数是 ,报3的人心里想的数是 .所以
,
解得 .
三、解答题(共4题,每题20分,共80分)
11.函数 的图象与 轴的两个交点是否都在直线 的右侧?若是,请说明理由;若不一定是,请求出两个交点都在直线 的右侧时k的取值范围.
解:不一定,例如,当k=0时,函数的图象与x轴的交点为(0,0)和
(1,0),不都在直线 的右侧. ………………5分
设函数与x轴的两交点的横坐标为 ,则 ,当
且仅当满足如下条件
………………10分
时,抛物线与 轴的两交点都在直线 的右侧.
由
解之,得 ………………15分
所以当 时,抛物线与 轴的两交点在直线 的右侧.
………………20分
12.在平面直角坐标系 中,我们把横坐标为整数、纵坐标为完全平方数的点称为“好点”,求二次函数 的图象上所有“好点”的坐标.
解:设 ,m,k都是非负整数,则
,
即 . ……………10分
则有
解得
所以
故“好点”共有4个,它们的坐标是:
………………20分
13.如图,给定锐角三角形ABC, ,AD,BE是它的两条高,过点 作△ABC的外接圆的切线 ,过点D,E分别作 的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.
解法1:结论是 .下面给出证明. ………………5分
因为 ,所以Rt△FCD ∽ Rt△EAB.于是可得
.
同理可得 .
………………10分
又因为 ,所以有 ,于是可得
. ………………20分
解法2:结论是 .下面给出证明.
……………… 5分
连接DE,因为 ,所以A,B,D,E四点共圆,故
. ………………10分
又l是⊙O的过点C的切线,所以 . ………………15分
所以, ,于是DE‖FG,故DF=EG.
………………20分
14.n个正整数 满足如下条件: ;
且 中任意n-1个不同的数的算术平均数都是正整数.求n的最大值.
解:设 中去掉 后剩下的n-1个数的算术平均数为正整数 , .即 .
于是,对于任意的1≤ ≤n,都有
,
从而 . ………………5分
由于 是正整数,故
. ………………10分
由于
≥ ,
所以, ≤2008,于是n ≤45.
结合 ,所以,n ≤9. ………………15分
另一方面,令 ,…, ,
,则这9个数满足题设要求.
综上所述,n的最大值为9. ………………20分
七、(本题满分7分)
23.已知:关于x的方程 有两个实数根 ,关于y的方程 有两个实数根 ,且 。当 时,求m的取值范围。
八、(本题满分8分)
24.已知:AB是半圆O的直径,点C在BA的延长线上运动(点C与点A不重合),以OC为直径的半圆M与半圆O交于点D,∠DCB的平分线与半圆M交于点E。
(1)求证:CD是半圆O的切线(图1);
(2)作EF⊥AB于点F(图2),猜想EF与已有的哪条线段的一半相等,并加以证明;
(3)在上述条件下,过点E作CB的平行线交CD于点N,当NA与半圆O相切时(图3),求∠EOC的正切值。
图1
图2
图3
23.解:∵关于x的方程 有两个实数根x1和x2
解得 ①
∵关于y的方程 有两个实数根
解得0≤n≤4
由根与系数的关系得
整理,得
由二次函数 的图象可得
当 ②
由①、②得m的取值范围是
八、
24.(1)证明:如图1,连结OD,则OD为半圆O的半径
图1
∵OC为半圆M的直径
∴∠CDO=90°
∴CD是半圆O的切线。
(2)猜想: 。
证法三:如图,连结OD、ME,OD、ME相交于点H
∵CE平分∠DCB
∴ ∴ME⊥OD,OH
∵EF⊥CO ∴∠MFE=∠MHO=90°
∵∠EMF=∠OMH,ME=MO
∴△MEF≌△MOH
∴EF=OH ∴
(3)解:如图3,延长OE交CD于点K
图3
设OF=x,EF=y,则OA=2y
∵NE//CB,EF⊥CB,NA切半圆O于点A
∴四边形AFEN是矩形
∴
同(2)证法一,得E是OK的中点
∴N是CK的中点
∴Rt△CEF∽Rt△EOF
∴
∴
解得
∴tan∠EOC=3
25.(1)解:∵抛物线 与x轴交于A、B两点
∴关于x的方程 有两个不相等的实数根
解得
∵点A在点B的左边,且m0,∴A(-m,0),B(2m,0)
解法二:如图2,过点O作OG//AC交BE于点G
图2
∴△CED∽△OGD ∴
∵DC=DO ∴CE=OG
∵OG//AC ∴△BOG∽△BAE ∴
∵OB=2m,AB=3m ∴
(3)解法一:如图3
图3
∵点C在抛物线上(与点A不重合),C、A两点到y轴的距离相等
∴C(m,2m2)
过点E作DC边上的高EP,过点A作OC边上的高AQ
∴EP//AQ
∴△CEP∽△CAQ
∴
∵
∴
解得m=2
∴抛物线的解析式为
点C的坐标为(2,8),点B的坐标为(4,0)
分别过点D、C作x轴的垂线,交x轴于点M、N
∴DM//CN
∵D是OC的中点
∴
∴D点的坐标为(1,4)
设直线BE的解析式为
∴直线BE的解析式为
解法二:如图4,连结OE
图4
∵D是OC的中点
∴
以下同(3)解法一
23.如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:
(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;
(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
24.已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点。
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A。求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长。
25.我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形。请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论。
23.解:(1)FE与FD之间的数量关系为FE=FD。
(2)答:(1)中的结论FE=FD仍然成立。
证法一:如下图,在AC上截取AG=AE,连结FG
因为∠1=∠2,AF为公共边
可证△AEF≌△AGF
所以 ∠AFE=∠AFG,FE=FG
由∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线
可得∠2+∠3=60°
所以∠AFE=∠CFD=∠AFG=60°
所以∠CFG=60°
由∠3=∠4及FC为公共边,可得△CFG≌△CFD
所以FG=FD
所以FE=FD
24.解:(1)根据题意,c=3
所以
解得
所以 抛物线解析式为
(2)依题意可得OA的三等分点分别为(0,1),(0,2)
设直线CD的解析式为
当点D的坐标为(0,1)时,直线CD的解析式为
当点D的坐标为(0,2)时,直线CD的解析式为
(3)如图,由题意,可得
点M关于x轴的对称点为
点A关于抛物线对称轴 的对称点为A'(6,3)
连结A'M'
根据轴对称性及两点间线段最短可知,A'M'的长就是所求
点P运动的最短总路径的长
所以A'M'与x轴的交点为所求E点,与直线x=3的交点为所求F点。
可求得直线A'M'的解析式为
可得E点坐标为(2,0),F点坐标为(3, )
由勾股定理可求出
所以点P运动的最短总路径(ME+EF+FA)的长为 。
25.解:(1)略。
(2)结论:等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和大于或等于一条对角线的长。
已知:四边形ABCD中,对角线AC、BD交于点O,AC=BD
且∠AOD=60°
求证:BC+AD≥AC
证明:过点D作DF‖AC,在DF上截取DE,使DE=AC
连结CE、BE
故∠EDO=60°,四边形ACED是平行四边形
所以△BDE是等边三角形,CE=AD
所以DE=BE=AC
①当BC与CE不在同一条直线上时(如下图)
在△BCE中,有BC+CE>BE
所以BC+AD>AC
②当BC与CE在同一条直线上时(如下图)
则BC+CE=BE
因此 BC+AD=AC
综合①、②,得 BC+AD≥AC。
即等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和大于或等于其中一条对角线的长。
23. 如图,已知
(1)请你在 边上分别取两点 、 ( 的中点除
外),连结 、 ,写出使此图中只存在两对面
积相等的三角形的相应条件,并表示出面积相等的
三角形;
(2)请你根据使(1)成立的相应条件,
证明 .
23. 如图,已知
(1)请你在 边上分别取两点 、 ( 的中点除
外),连结 、 ,写出使此图中只存在两对面
积相等的三角形的相应条件,并表示出面积相等的
三角形;
(2)请你根据使(1)成立的相应条件,
证明 .
解:
(1)相应的条件是: BD = CE ≠ DE ;
两对面积相等的三角形分别是: △ABD和△ACE,△ABE和△ACD .
证法2:如图,分别过点A、E作CB、CA的平行线,两线交于F点,EF与AB交于G点,连结BF. 则四边形FECA是平行四边形,所以 FE = AC,AF = CE.
因为 BD = CE
所以 BD = AF
所以 四边形FBDA是平行四边形
所以 FB = AD
在△AGE中,AG + EG >AE
在△BFG中,BG + FG >FB
可推得 AG + EG + BG + FG >AE + FB
所以 AB + AC >AD + AE
24. 在平面直角坐标系 中,抛物线 经过 , 两点.
(1)求此抛物线的解析式;
(2)设抛物线的顶点为 ,将直线 沿 轴向下平移两个单位得到直线 ,直线 与抛物线的对称轴交于 点,求直线 的解析式;
(3)在(2)的条件下,求到直线 、 、 距离相等的点的坐标.
解:(1)由题意可得
故抛物线的解析式为: .
(2)由 可知抛物线的顶点坐标为B( ),故C( ),且直线 过原点. 设直线 的解析式为 ,则有 . 故直线 的解析式为 .
(3)到直线OB、OC、BC距离相等的点有四个.
由勾股定理可知OB=OC=BC=2,故△OBC为等边三角形,四边形ABCO是菱形,且∠BCO=60°,连接AC交x轴于一点M,易证点M到OB、OC、BC的距离相等. 由点A在∠BCO的平分线上,故它到BC、CO的距离相等均为 ,
同时不难计算出点A到OB的距离为 ,故点A也算其中一个. 同理,不难想到向左、向下可以分别作与ABCO全等的菱形(如图所示,其中△OBC为新菱形的一半),此时必然存在两个点,使得它到直线OB、OC、BC的距离相等.
此四个点的坐标分别为:M( )、A(0,2)、(0,-2)、( ).
25. 我们知道:有两条边相等的三角形叫做等腰三角形,类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在 中,点 、 分别在 、 上,设 、 相交于 ,若 , ,请你写出图中一个与 相等的角,并猜想图中哪个四边形是等对边四边形;
(3)在 中,如果 是不等于60º的锐角,点 、 分别在 、 上,且 ,探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
解:
(1)平行四边形、等腰梯形等满足条件的即可.
(2)与∠A相等的角是∠BOD(或∠COE)
四边形DBCE是等对边四边形.
(3)此时存在等对边四边形DBCE.
证明1:如图,作CG⊥BE于G点,作BF⊥CD交CD的延长线于F点.
∵∠DCB=∠EBC= ∠A,BC为公共边
∴△BGC≌△CFB
∴BF=CG
∵∠BDF=∠ABC+∠DCB=∠ABE+∠EBC+∠DCB=∠ABE+∠A
∠GEC=∠ABE+∠A
∴△BDF≌△CEG
∴BD=CE
故四边形DBCE是等对边四边形.
证明2:如图,在BE上取一点F,使得BF=CD,连接CF.
易证△BCD≌△CBF,故BD=CF,∠FCB=∠DBC.
∵∠CFE=∠FCB+∠CBF=∠DBC+∠CBF=∠ABE+2∠CBF=∠ABE+∠A
∠CEF=∠ABE+∠A
∴CF=CE
∴BF=CE
故四边形DBCE是等对边四边形.
考点:三角形中位线定理;一元二次方程的应用.
专题:几何综合题.
分析:(1)过点E作EQ⊥AC于Q,EN⊥BC于N,过点D作DK⊥BC于K,根据角平分线上的点到角的两边的距离相等可得EQ=EN,根据三角形的中位线平行于第三边并且等于第三边的一半可得EQ=2FG=2a,同理可得DK=2FH=2b,再根据垂直于同一直线的两直线平行可得EN∥FM∥DK,然后根据梯形的中位线等于两底和的一半可得EN+DK=2FM,从而求出2a+2b=2c,然后把c换成a、b并配方整理,再根据非负数的性质列式求出a、b、m,再求出c即可;
(2)根据a、b的值可得EN=DK,求出DE∥BC,根据两直线平行,内错角相等可得∠CBD=∠EDB,再根据角平分线的定义可得∠EBD=∠CBD,从而得到∠EBD=∠EDB,根据等角对等边可得BE=DE,然后利用“HL”证明△EDQ和△EBN全等,同理可得△EDQ和△DCK全等,根据全等三角形对应边相等可得BN=DQ=CK,再求出BC-CD=4DG,然后整理即可得证.
点评:本题考查了三角形的中位线定理,梯形的中位线定理,角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,求出a+b=c,然后利用配方法和非负数的性质列式求出a、b、m的值是解题的关键.