没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二上学期数学知识点归纳
分式方程
一、理解定义
1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)解这个整式方程。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
(4)写出原方程的根。
“一化二解三检验四 总结 ”
3、增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根;
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验 方法 :将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
5、分式方程解实际问题
步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
八年级上册数学知识点
(一)运用公式法
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
八年级数学重要知识点
【概率初步】
23.1确定事件和随机事件
1.在一定条件下必定出现的现象叫做必然事件
2.在一定条件下必定不出现的现象叫做不可能事件
3.必然事件和不可能事件统称为确定事件
4.那些在一定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事件23.2事件发生的可能性
23.3时间的概率
1.用来表示某事件发生的可能性大小的数叫做这个事件的概率
2.规定用0作为不可能事件的概率;用1作为必然时间的概率
3.事件A的概率我们记作P(A);对于随机事件A,可知0
4.如果一项可以反复进行的试验具有以下特点:
(1)试验的结果是有限个,各种结果可能出现的机会是均等的;
(2)任何两个结果不可能同时出现
那么这样的试验叫做等可能试验
5.一般地,如果一个试验共有n个等可能的结果,事件A包含其中的k个结果,那么事件A的概率P(A)=事件A包含的可能结果数/所有的可能结果总数=k/n
6.列举法、树状图、列表
23.4概率计算举例
八年级数学必备知识点总结相关 文章 :
★ 八年级数学知识点整理归纳
★ 人教版八年级数学上册知识点总结
★ 初二数学知识点归纳整理
★ 八年级下册数学知识点整理
★ 初中八年级数学知识点总结
★ 初二数学知识点归纳梳理
★ 初二数学基础知识点归纳
★ 初二数学上册知识点总结
★ 初二数学知识点整理归纳
★ 初二数学知识点整理
学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
数学知识点八年级
【统计的初步认识】
1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充内容:
1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
课后练习
1.统计学的基本涵义是(D)。
A.统计资料
B.统计数字
C.统计活动
D.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。
2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。
A.每一个国有工业企业
B.该地区的所有国有工业企业
C.该地区的所有国有工业企业的生产经营情况
D.每一个企业
3.要了解20个学生的学习情况,则总体单位是(C)。
A.20个学生
B.20个学生的学习情况
C.每一个学生
D.每一个学生的学习情况
4.下列各项中属于数量标志的是(B)。
A.性别
B.年龄
C.职称
D.健康状况
初二下册数学知识点 总结
【抽样调查】
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。
课后练习
1.抽样成数是一个(A)
A.结构相对数B.比例相对数C.比较相对数D.强度相对数
2.成数和成数方差的关系是(C)
A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大
C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大
3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)
A.全面调查B.非全面调查C.一次性调查D.经常性调查
4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)
A.甲产品大B.乙产品大C.相等D.无法判断
数学知识点八年级
菱形的判定定理
1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。
八年级数学知识点相关 文章 :
★ 人教版八年级数学上册知识点总结
★ 八年级数学知识点整理归纳
★ 八年级数学知识点总结
★ 初二数学上册知识点总结
★ 初二数学知识点归纳
★ 初二数学知识点复习整理
★ 八年级数学上知识点归纳
★ 八年级数学上册知识点归纳
★ 八年级上册数学知识点整理
学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。
初二下册数学知识点归纳
第一章一元一次不等式和一元一次不等式组
一、不等关系
1、一般地,用符号""(或"≤"),""(或"≥")连接的式子叫做不等式.
2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.
3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语.
非负数===大于等于0(≥0)===0和正数===不小于0
非正数===小于等于0(≤0)===0和负数===不大于0
二、不等式的基本性质
1、掌握不等式的基本性质,并会灵活运用:
(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:
如果ab,那么a+cb+c,a-cb-c.
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即
如果ab,并且c0,那么acbc,.
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:
如果ab,并且c0,那么ac
2、比较大小:(a、b分别表示两个实数或整式)
一般地:
如果ab,那么a-b是正数;反过来,如果a-b是正数,那么ab;
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a
即:
ab===a-b0
a=b===a-b=0
aa-b0
(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
三、不等式的解集:
1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.
2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.
3、不等式的解集在数轴上的表示:
用数轴表示不等式的解集时,要确定边界和方向:
①边界:有等号的是实心圆圈,无等号的是空心圆圈;
②方向:大向右,小向左
八年级 上册期末数学复习资料
第一章勾股定理
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。
第二章实数
1.平方根和算术平方根的概念及其性质:
(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
(2)性质:①当≥0时,≥0;当0时,无意义;②=;③。
2.立方根的概念及其性质:
(1)概念:若,那么是的立方根,记作:;
(2)性质:①;②;③=
3.实数的概念及其分类:
(1)概念:实数是有理数和无理数的统称;
(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。
5.算术平方根的运算律:(≥0,≥0);(≥0,0)。
第三章图形的平移与旋转
1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
3.作平移图与旋转图。
八年级数学 学习方法技巧
自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做, 其它 的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
初二数学知识点归纳整理相关 文章 :
★ 初二数学知识点复习整理
★ 初二数学知识点归纳
★ 初二数学知识点归纳上册人教版
★ 八年级数学知识点整理归纳
★ 八年级下册数学知识点整理
★ 初二数学上册知识点总结
★ 初二数学知识点整理
★ 初二数学重点知识归纳整理
★ 初二数学知识点归纳总结
★ 初二数学知识点整理归纳
初二数学上册知识点总结
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。以下是我整理的关于初二数学上册知识点总结,希望大家认真阅读!
第十一章 三角形
一、知识结构图
边
与三角形有关的线段 高
中线
角平分线
三角形的内角和 多边形的内角和
三角形的外角和 多边形的外角和
二、知识定义
三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
平面镶嵌:用一些不重叠摆放的多边形把平面的`一部分完全覆盖,叫做用多边形覆盖平面。
三、公式与性质
三角形的内角和:三角形的内角和为180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的角和:多边形的外角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有条对角线。
第十二章 全等三角形
一、全等三角形
1.定义:能够完全重合的两个三角形叫做全等三角形。
2.全等三角形的性质
①全等三角形的对应边相等、对应角相等。
②全等三角形的周长相等、面积相等。
③全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定
边边边:三边对应相等的两个三角形全等(可简写成“SSS”)
边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)
角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)
角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)
斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)
4.证明两个三角形全等的基本思路:
二、角的平分线:
1.(性质)角的平分线上的点到角的两边的距离相等
2.(判定)角的内部到角的两边的距离相等的点在角的平分线上
三、学习全等三角形应注意以下几个问题:
1.要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;
2.表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
3.有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等;
4.时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”
;