计算机科学之父 图灵(恩尼格玛密码图灵)

2023-04-03 22:44:42 密码用途 思思

艾伦·麦席森·图灵(英文:Alan Mathison Turing,1912年6月23日-1954年6月7日),英国数学家、逻辑学家,被称为计算机科学父,人工智能之父。1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,第二次世界大战暴发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得二战的胜利。

1952年,英国振幅对图灵的同性恋取向定罪,随后图灵进行化学阉割(雌激素注射)。1954年6月7日,图灵吃下有氰化物的苹果中毒身亡,享年41岁。2013年12月24日,在英国司法大臣克里斯·格雷灵的要求下,英国女王伊丽莎白二世向图灵颁发了皇家赦免。

图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能化的试验方法,即图灵试验,至今,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。

艾伦·麦席森·图灵,1912年6月23日生于英国伦敦。艾伦·麦席森·图灵少年时就表现出独特的直觉创造能力和对数学的爱好。

1926年,14岁的图灵考入伦敦有名的谢伯恩公学去学习,受到良好的中等教育,他在中学期间表现出对自然的极大兴趣和敏锐的数学头脑。

1927年末,年仅15岁的图灵为帮助母亲理解爱因斯坦的相对论,写了爱因斯坦的一部著作的内容提要,表现出他已具备非同凡响的数学水平和科学理解力。

图灵对自然可写的兴趣使他在1930年和1931年两次获得他的一位同学莫克姆的父母设立的自然科学奖,获奖工作中有一篇论文题为“亚硫盐酸和卤化物在酸性溶液中的反应”,受到了政府派来的督学的赞赏,对自然科学的虚拟光驱为他后来的一些研究奠定了基础,他的数学能力使他在念中学时获得过国王爱德华六世数学金盾奖章。

1931年,图灵考进剑桥国王学院,由于成绩优异而获得数学奖学金,在剑桥,他的数学能力得到充分的发展。1935年,他的第一篇数学论文“左右殆周期性的等价”发表于《伦敦数学会杂志》上。同一年,他还写出“论高斯误差函数”一文。这一论文使他又一名大学生直接当选为国王学院的研究员,并与次年荣获英国著名的史密斯(Smith)数学奖,成为国王学院声名显赫的毕业生之一。

1936年5月,图灵向英国权威的数学杂志投了一篇论文,题位《论数学计算在决断难题中的应用》。该文于1937年在《伦敦数学会文集》第42期上发表后立即引起了广泛的注意。在论文的附录里他描述了一可以辅助数学研究的机器,后来我们所熟知的电脑,以及还没有实现的”人工智能“都基于这个设想。这是他人生第一篇重要文章,也是他的成名之作。

1937年,图灵发表的另一篇文章“可计算性与λ可定义性”则拓广了丘奇(Church)提出的“丘奇论点”,形成“丘奇-图灵论点”,对计算机理论的严格化,对计算机科学的形成和发展都具有奠基性的意义。

1936年9月,图灵应邀到美国普林斯顿高级研究院学习,并于丘奇一同工作。

在美国期间,他对群论做了一些研究,并撰写了博士论文。1938年在普林斯顿获得博士学位,其论文题目为“以序数为基础的逻辑系统”,1939年正式发表,在数理逻辑研究中产生了深远的影响。

1938年夏,图灵回到英国,仍在剑桥大学国王学院任研究员,继续研究数理逻辑和计算理论,同时开始了计算机的研制工作。

第二次世界大战打断了图灵的正常研究工作,1939年秋,他应召到英国外交部通信处从事军事工作,主要是破译敌方密码的工作。由于破译工作的需要,他参与了世界上最早的电子计算机的研制工作。他的工作取得了极好的成就,因而于1945年获政府的最高奖——大英帝国荣誉勋章(O.B.E.勋章)。

1945年,图灵结束了在外交部的工作,他试图恢复战前在理论计算机科学方面的研究,并结合战时的工作,具体研制出新的计算机来。这一想法得到当局的支持。同年,图灵被录用为泰丁顿Teddington)国家物理研究所的研究人员,开始从事“自动计算机” (ACE) 的逻辑设计和具体研制工作。这一年,图灵写出一份长达50页的关于ACE的设计说明书。这一说明书在保密了27年之后,于1972年正式发表。在图灵的设计思想指导下,1950年制出了ACE样机,1958年制成大型ACE机。人们认为,通用计算机的概念就是图灵提出来的。

1945年到1948年,他在英国国家物理实验室工作,负责自动计算引擎的研究。

1946年的8月,图灵参加了他正式跑步训练后的第一个比赛。那是在他加入沃尔顿田径俱乐部后参加的3英里 (4.8公里) 比赛,图灵以15分37秒的成绩夺得第一,这一成绩当年在英国排名第20位。

1947年,在莱斯特郡拉夫堡 (Loughborough) 大学体育场举行的英国业余田径协会马拉松锦标赛上,图灵跑出了他在马拉松赛中的个人最好成绩2小时46分03秒,在那场比赛中列第五名。

1948年,图灵接受了[曼彻斯特大学]的高级讲师职务,并被指定为曼彻斯特自动数字计算机(Madam)项目的负责人助理,具体领导该项目数学方面的工作,作为这一工作的总结。

1949年成为曼彻斯特大学计算机实验室的副主任,负责最早的真正意义上的计算机——“曼彻斯特一号”的软件理论开发,因此成为世界上第一位把计算机实际用于数学研究的科学家。

1950年,图灵编写并出版了《曼彻斯特电子计算机程序员手册》(The programmers’handbook for the Manchester electronic computer)。这期间,他继续进行数理逻辑方面的理论研究。并提出了著名的“图灵测试”。同年,他提出关于机器思维的问题,他的论文“计算机和智能(Computingmachiery and intelligence),引起了广泛的注意和深远的影响。1950年10月,图灵发表论文《机器能思考吗》。这一划时代的作品,使图灵赢得了“人工智能之父”的桂冠。

1951年,由于在可计算数方面所取得的成就,成为英国皇家学会会员,时年39岁。

1952年,他辞去剑桥大学国王学院研究员的职务,专心在曼彻斯特大学工作.除了日常工作和研究工作之外,他还指导一些博士研究生,还担任了制造曼彻斯特自动数字计算机的一家公司——弗兰蒂公司的顾问。

1952年,图灵写了一个国际象棋程序。可是,当时没有一台计算机有足够的运算能力去执行这个程序,他就模仿计算机,每走一步要用半小时。他与一位同事下了一盘,结果程序输了。后来美国新墨西哥州洛斯阿拉莫斯国家实验室的研究群根据图灵的理论,在MANIAC上设计出世界上第一个电脑程序的象棋。

1952年,图灵的同性伴侣协同一名同谋一起闯进了图灵的房子实施盗窃。图灵为此而报警。但是警方的调查结果使得他被控以“明显的猥亵和性颠倒行为”(同性恋)。他没有申辩,并被定罪。在著名的公审后,他被给予了两个选择:坐牢或 荷尔蒙疗法 。他选择了荷尔蒙注射,并持续了一年。在这段时间里,药物产生了包括乳房不断发育的副作用。

1954年6月7日,图灵被发现死于家中的床上,床头还放着一个被咬了一口的泡过氰化物的苹果。警方调查后认为是剧毒的氰化物中毒,调查结论为自杀。当时图灵41岁。

2009年,英国计算机科学家康明(John Graham-Cumming)发起了为图灵平反的在线请愿,截止到2009年9月10日请愿签名人数已经超过了3万,为此,当时的英国政府及首相戈登布朗不得不发表正式的道歉声明。

2012年12月,霍金、纳斯(Paul Nurse,诺贝尔医学奖得主)、里斯(Martin Rees,[英国皇家学会会长)等11位重要人士致函英国首相卡梅伦,要求为其平反。

2013年12月24日,在英国司法大臣克里斯・格雷灵(ChrisGrayling)的要求下,英国女王终于向图灵颁发了皇家赦免。英国司法部长宣布,“图灵的晚年生活因为其同性取向而被迫蒙上了一层阴影,我们认为当时的判决是不公的,这种歧视现象如今也已经遭到了废除。为此,女王决定为这位伟人送上赦免,以此向其致敬。”

图灵在他的“论可计算数及其在判定问题中的应用”一文中从一个全新的角度定义了可计算函数。他全面分析了人的计算过程,把计算归结为最简单、最基本、最确定的操作动作,从而用一种简单的方法来描述那种直观上具有机械性的基本计算程序,使任何机械(能行)的程序都可以归约为这些动作。这种简单的方法是以一个抽象自动机概念为基础的,其结果是:算法可计算函数就是这种自动机能计算的函数。这不仅给计算下了一个完全确定的定义,而且第一次把计算和自动机联系起来,对后世产生了巨大的影响,这种“自动机”后来被人们称为“图灵机”。

图灵在第二次世界大战中从事的密码破译工作涉及到电子计算机的设计和研制,但此项工作严格保密。直到70年代,内情才有所披露。从一些文件来看,很可能世界上第一台电子计算机不是ENIAC,而是与图灵有关的另一台机器,即图灵在战时服务的机构于1943年研制成功的CO-LOSSUS(巨人)机,这台机器的设计采用了图灵提出的某些概念。它用了1500个电子管,采用了光电管阅读器;利用穿孔纸带输入;并采用了电子管双稳态线路,执行计数、二进制算术及布尔代数逻辑运算,巨人机共生产了10台,用它们出色地完成了密码破译工作。战后,图灵任职于泰丁顿国家物理研究所(Teddington National Physical Laboratory),开始从事“自动计算机”(Automatic Computing Engine)的逻辑设计和具体研制工作。1946年,图灵发表论文阐述存储程序计算机的设计。他的成就与研究离散变量自动电子计算机(Electronic Discrete Variable Automatic Computer)的约翰·冯·诺伊曼(John von Neumann)同期。图灵的自动计算机与诺伊曼的离散变量自动电子计算机都采用了二进制,都以“内存储存程序以运行计算机”打破了那个时代的旧有概念。

从1952年直到去世,图灵一直在数理生物学方面做研究。他在1952年发表了一篇论文《形态发生的化学基础》(The Chemical Basis of Morphogenesis)。他主要的兴趣是斐波那契叶序列,存在于植物结构的斐波那契数。他应用了反应-扩散公式,如今已经成为图案形成范畴的核心。他后期的论文都没有发表,一直等到1992年《艾伦·图灵选集》出版,这些文章才见天日。

1945年到1948年,图灵在国家物理实验室,负责自动计算引擎(ACE)的工作 。1949年,他成为曼彻斯特大学计算机实验室的副主任,负责最早的真正的计算机---曼彻斯特一号的软件工作。在这段时间,他继续作一些比较抽象的研究,如“计算机械和智能”。图灵在对人工智能的研究中,提出了一个叫做图灵试验的实验,尝试定出一个决定机器是否有感觉的标准。

图灵发明的人工智能,破译了德国恩格密码机

图灵发明了破译德国格恩密码机,是计算机的雏形。但并不是人工智能,但对人工智能有很多贡献。艾伦·麦席森·图灵(Alan Mathison Turing,1912年6月23日-1954年6月7日),英国数学家、逻辑学家,称为计算机科学之父,人工智能之父。图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,至今,每年都有试验的比赛。图灵发明了破译德国格恩密码机,是计算机的雏形。但并不是人工智能,但对人工智能有很多贡献。艾伦·麦席森·图灵(Alan Mathison Turing,1912年6月23日-1954年6月7日),英国数学家、逻辑学家,称为计算机科学之父,人工智能之父。图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,至今,每年都有试验的比赛。

图灵与人工智能

阿兰·图灵(1912—1954)阿兰・麦席森・图灵,1912 年 6 月 23 日出生在伦敦帕丁顿的疗养院。他的父亲曾在印度公务署为英帝国效力,母亲出生在马德拉斯,外祖父是一位工程师,因为在印度修建桥梁和铁路赚了大钱。1907 年,图灵的父母在一艘从印度到英国的船上相遇,同年在都柏林结婚。1908 年年初,他们回到印度。阿兰是他们的第二个男孩,他母亲 1911 年在印度怀上了他,后回英国生产。

阿兰和他的哥哥约翰幼年在英国度过,由一对退休夫妇照顾,父母则因为工作住在印度,这在当时很常见。

1922 年,阿兰进入肯特的哈兹勒赫斯特预备学校学习。他最初的兴趣是地图、国际象棋和化学。期间图灵读到一本埃德温・坦尼・布鲁斯特所著的《每个儿童应该知道的自然奇观》。图灵后来说,这本书开启了他的科学视野,并对他理解人与机器之间的关系产生了更深刻的影响。“显然,人体也是一台机器。” 那本书对此解释道:

“它是一台极其复杂的机器。虽然比任何手工制作的机器都要复杂千万倍,但其本质上仍然是一台机器。有人曾将人体比作一台蒸汽机,但那时我们还不太了解它的工作原理。现在,我们会把它比喻为一台内燃机,就像是汽车、轮船和飞机的内燃机一样。”

20 世纪初,“人体是机器” 的想法被看成是非常无知的,就像现在儿童读物里很幼稚的想法一样。但事实并非如此。在图灵出生前 200 年,法国医生兼哲学家朱利安・奥佛雷・拉・美特利(1709—1751)在其 1747 年的争议性作品 L’Homme Machine(《人是机器》)中,毫不掩饰地描述了人体甚至思维的机械般的工作机制。图灵从小就觉得自己的身体也是一台机器,后来也因探索机器和人类间的联系而被世人铭记。

1926 年,他被一所最古老的英国公立学校舍伯恩录取。图灵在舍伯恩第一学期的第一天被大罢工所阻,不能乘火车去学校,阿兰决定骑车 60 英里上学,这一壮举被当地的报纸所报道。

在舍伯恩,阿兰没能与其他男孩打成一片。他害羞、孤独,似乎总是衣衫不整、墨迹斑斑。“他的所有特征都容易成为笑柄,尤其是他那害羞、犹豫、尖细的声音 —— 不完全是口吃,而是吞吞吐吐,就像在等待一个复杂的程序将他的想法转化成人类语言一样。” 他本可以在学习上表现优异而弥补自己的不足,但事实并非如此。只有在数学上,他才表现出一些智力天赋的端倪。

到了 1929 年,阿兰开始着迷于《物理世界的自然》(1928)一书。这是一本广为流行并极具影响力的书,由剑桥大学天文学家亚瑟・埃丁顿爵士所著,书中探讨了相对论和量子理论的新科学所带来的影响。阿兰同时和一个名为克里斯托弗・莫科姆的同学交往密切,他和阿兰在科学和数学上有着共同的兴趣,而且出生在一个比阿兰家更有意思并兼具科学气氛的家庭。克里斯托弗的外祖父是约瑟夫・斯万爵士,他在 1879 年发明了白炽灯泡,独立于爱迪生的发明。

回想起来,图灵很可能在那时发现了他的同性恋倾向,克里斯托弗是他的初恋。但是没有任何迹象表明,这两名青年之间发生了身体接触,他们一起做化学实验,交流数学公式,并探讨埃丁顿和剑桥大学另一位天文学教授詹姆斯・简爵士所著书中的新天文学和新物理学。

剑桥大学是有抱负的英国科学家追逐向往之地,其在科学和数学上最享有盛名的学院就是三一学院。1929 年 12 月,阿兰和克里斯托弗花了一周的时间到剑桥大学参加奖学金考试,一起沐浴在弗朗西斯・培根、艾萨克・牛顿、詹姆斯・克拉克・麦克斯韦母校的氛围中。他们回到舍伯恩一周后,考试结果公布在了《泰晤士报》上。阿兰没被录取,而克里斯托弗被录取了。克里斯托弗将前往三一学院,而阿兰最大的希望是能争取在下一年入学三一学院或者剑桥的其他学院。

两个月后,克里斯托弗突然生病并在一周内去世,病因是他小时候所感染的牛结核病。他们舍伯恩的一位旧日同窗在信中写道:“可怜的图灵因为这个打击几乎崩溃,他们一定是极其要好的朋友。” 虽然图灵也与其他男人有着更亲密的性关系,但显然他对克里斯托弗的爱与崇拜是其他人所不能比的。

1930 年 12 月,图灵再次参加了三一学院的考试,但仍然未被录取。他的第二选择是剑桥大学国王学院。这一次,他决定专攻数学,全心钻研 G. H. 哈代的经典著作《纯数学教程》(A Course of Pure Mathematics)备考,这本书在当时已经是第 15 版了。1931 年秋,阿兰开始了他在剑桥大学国王学院的学习。

接来的一年,图灵研究起一本叫做《量子力学的数学基础》(Mathematische Grundlagen der Quantenmechanik)的新书,这本书由年轻的匈牙利数学家约翰・冯・诺依曼所著。20 世纪 20 年代中期,冯・诺依曼曾与大卫・希尔伯特在哥廷根大学一起共事。绝大多数早期量子力学的数学研究工作都是在哥根廷大学进行的。20 世纪 30 年代,冯・诺依曼移民美国并在普林斯顿大学任教,1933 年成为普林斯顿高等研究院聘任的首批数学家之一。现在,通过一些场合,冯・诺依曼和阿兰・图灵的生活开始有了交集。

图灵与冯・诺依曼的第一次见面很可能是在 1935 年夏天,当时冯・诺依曼利用在普林斯顿大学的工作假期来到剑桥大学做关于殆周期函数的演讲。图灵已经熟知演讲的主题以及冯・诺依曼在这方面的研究工作。就在那年春天,图灵已经发表了他的第一篇论文,共两页,讨论了 “左右殆周期性的等价性”(Equivalence of Left and Right Almost Periodicity,伦敦数学学会,1935),推广了冯・诺依曼在前一年发表的一篇论文。

他们都没想到,两人会在次年于新泽西州的普林斯顿再次相遇。

图灵对于数理逻辑这一精妙深奥领域的兴趣可能开始于 1933 年,当时他阅读了伯特兰・罗素 1919 年的作品《数学哲学导论》。书的末尾写道:

“如果有学生因为这本书而迈入数理逻辑的大门,并进行认真的研究,那么这本书就达到当时写作的初衷了。”

1935 年的春季学期,图灵修读了 “数学基础” 课程,授课人是麦克斯韦・赫尔曼・亚历山大・纽曼(1897—1984),其姓名缩写 M.H. A.。纽曼更为人熟知,人们常亲切地称他麦克斯。麦克斯・纽曼名声在外的是他在组合拓扑方面的工作,不过他也可能是剑桥大学在数理逻辑方面最有见识的人。纽曼整个课程的高潮是对哥德尔不完备性定理的证明。(研究生水平的数理逻辑导论课程至今仍然采用类似的结构。

此外,纽曼的课程也涵盖了尚未解决的判定性问题。“是否有一种确定的方法,或者纽曼所说的‘机械过程’,它可以应用于一个数学命题,并得出该命题能否被证明的结论?” 当然,对于 “机械过程”,纽曼指的不是一台机器。机器也许能够进行简单的算术,但几乎不能解决实际意义上的数学问题。纽曼暗指的是后人称为 “算法” 的一类过程 —— 用于解决某个问题的一组明确(但无意识的、非智能的)指令集。图灵开始研究判定性问题很可能是在 1935 年初夏。那时,他已经获得了剑桥大学奖学金,每年 300 英镑。图灵后来说,想到判定性问题的解决思路时,他正躺在格兰切斯特草坪上,这是剑桥学生很喜欢的一个休闲场所,距国王学院大约两英里。

到 1936 年 4 月,图灵把论文 “论可计算数及其在判定性问题上的应用” 的草稿交给了纽曼。

大约在麦克斯・纽曼阅读图灵论文手稿的同一时间,他又收到美国数学家阿隆索・邱奇寄来的短论文 “判定性问题的笔记” 13 的单行本。基于已刊出的另一篇论文,邱奇的文章同样做出了判定性问题不可解的结论。

别人比图灵捷足先登了。这通常意味着他的论文不能发表,注定要被遗忘。但麦克斯・纽曼意识到,图灵的方法更具创新性,并且与邱奇的方法有着很大的差异。他仍然建议图灵向伦敦数学学会提交论文发表。(从发表的论文看,该学会于 1936 年 5 月 28 日收到它。)图灵在 5 月 29 日给他母亲的信上对此做出了解释:

“现在,有一篇论文同时在美国发表,作者是阿隆索・邱奇,他和我做的事相同,只是方法不同。尽管如此,纽曼先生和我觉得,截然不同的方法完全能够让我的论文得以发表。阿隆索・邱奇住在普林斯顿,所以我已经相当确定,我将去那里。”

图灵的论文发表在伦敦数学学会 1936 年 11 月和 12 月的论文集里,1937 年 12 月发表了一份三页纸的修订稿。阿隆索・邱奇在 1937 年 5 月的《符号逻辑杂志》(Journal of Symbolic Logic)中针对这篇论文写了一篇只有四段的评论,其中写道:“一位持有铅笔、纸和一串明确指令的人类计算者,可以被看做是一种图灵机。” 这是已知的 “图灵机” 一词最早见诸文字的地方。

早在 1935 年 5 月,图灵就考虑去普林斯顿大学,也申请了普林斯顿大学的访问奖学金。一年后,他发现普林斯顿大学数学系教授邱奇也发表了一篇关于判定性问题的论文,于是图灵 “相当肯定地决定” 要去普林斯顿大学。

纽曼为此提供了帮助。他向邱奇介绍了图灵的工作,并在同一封信中,请他帮助图灵获得奖学金:

“我应该指出,图灵的工作是完全独立进行的,一直没有得到任何人的指导或者评判。因而,让他尽早接触本领域的顶尖人员变得更加重要,这样他才不致于孤独成性。”

倾向于独立工作,不受外界影响,这实际上是图灵的一个大问题。早在他年轻的时候,图灵就重新创立了二项式理论,并发明了自己的微积分记号。在尝试解决判定性问题时,他不熟悉邱奇及其同事们的早期成果,这也许是件好事,否则他可能就不会找到这样有趣的解决方法了。然而,一般说来,还是有必要知道在世界其他地方发生了什么事情,而对于数理逻辑领域,普林斯顿就是这样的地方。图灵没能获得他申请的普罗科特奖学金,但得到了国王学院的奖学金。

新泽西州普林斯顿的知识光环由于高等研究院的成立而变得更加熠熠生辉。高等研究院的成立得到路易斯・班伯格 5 百万美元的捐赠。班伯格创建了班伯格百货连锁店,并在 1929 年经济大萧条之前将其出售给了梅西百货公司。

高等研究院一开始成立的目的是为了促进科学和历史研究。在最初的几年中,高等研究院的数学学院与普林斯顿大学的数学系在同一座楼,这促成了两个机构之间的许多交流。高等研究院迅速成为了优秀科学家和数学家的家园,他们中的一些人是逃离了危险的欧洲来到这里的,其中最有名的是爱因斯坦。他于 1933 年来到这里,并在此度过了余生。

图灵于 1936 年 9 月到达普林斯顿大学时,非常想见到库尔特・哥德尔。一年前,哥德尔还身在高等研究院,之后也回来过,可惜的是一直未能与图灵谋面。

图灵在剑桥大学时见过的冯・诺依曼此时在高等研究院,还有同样来自剑桥大学的 G. H. 哈代。理查德・柯朗和赫尔曼・外尔也在高等研究院,他们几年前逃离了哥廷根。

图灵在普林斯顿大学待了两年,并获得了第二年的普罗科特奖学金(总共 2000 美元),邱奇成为了图灵的论文指导教授。在邱奇的指导下,图灵写了一篇论文,并在 1938 年 6 月 21 日获得了博士学位。图灵婉拒了冯・诺依曼提出的一份 1500 元年薪、担任其助理的工作,并于一个月后回到了英国。他在剑桥大学教授数学基础这一课程。

图灵是一位英国数学家,他是计算机科学史上相当杰出的人物;学习过人工智能、计算机科学和密码学课程的学生应该熟悉他的贡献。他对人工智能的贡献在于著名的为测试人工智能开发的图灵测试他试图解决人工智能中有争议的问题,如“计算机是否有智能?”,由此制订了这个测试。在理论计算机科学中,有一门课程是研究图灵机的计算模型。图灵机是一个捕捉计算本质的数学模型。它的设计旨在固答这个问题:“函数可计算意味着什么?” 读者应该理解,在第一台数字计算机出现的七八年前,图灵就在本质上讨论了使用算法来解决特定问题的概念。

你可能已经看过描绘英国之战的第二次世界大战的电影。1940—1944 年间,德国飞机在英国丢下了近 20 万吨炸弹:在伦敦外的布莱奇利公园,图灵带领一队数学家破解德国密码——人称“恩尼格玛密码(Enigma Code)”他们最终用恩尼格玛密码机破解了密码。这个设备破译了发送到德国船只和飞机的所有军事命令的密码。图灵小组的成功在盟军的胜利中发挥了决定性的作用。

图灵发明了存储程序概念,这是所有现代计算机的基础。1935 年之前,他就已经描述了一台具有无限存储空间的抽象计算机器一它具有一个读取头(扫描嚣〉,来回移动读取存储空间,读取存储在存储空间中的程序指定的符号:这一概念称为通用图灵机(Universal Turing Machine)。

图灵很早就对如何组织神经系统促进大脑功能提出了自己的见解:Craig Webster 在其文章中阐释了图灵的论文《Computing Machinery and Intelligence》(最终于 1950 年发表在 Mind 上),将图灵 B 型网络作为无组织的机器进行了介绍,这个 B 型网络在人类婴儿的大脑皮层中可以发现。这种有远见的观察提醒了我们智能体的世界观。

图灵论述了两种类型的无组织机器,它们称为类型 A 和类型 B。类型 A 机器由 NAND 门组成,其中每个节点具有用 0 或 1 表示的两种状态、两种输入和任何数目的输出。每个 A 型网络都以特定的方式与另外 3 个 A 型节点相交,产生组成 B 型节点的二进制脉冲:图灵已经认识到培训的可能性以及自我刺激反馈循环的需要,图灵还认为需要一个“遗传搜索”来训练 B 型网络,这样就可发现令人满意的值(或模式)。

在布莱奇利公园,图灵经常与唐纳德·米基(他的同事和追随者)讨论机器如何从经验中学习和解决新问题的概念。后来,这被称为启发法问题求解和机器学习。

图灵很早就对用国际象棋游戏作为人工智能测试平台的问题求解方法有了深刻的认识。虽然他那个时代的计算机器还不足以开发出强大的国际象棋程序,但是他意识到了国际象棋所提出的挑战(具有 math xmlns=""semanticsannotation encoding="application/x-tex"10^{20}/annotation/semantics/math1020 种可能的合法棋局)。前面提到,其 1948 年的论文《计算机器和智能》为此后所有的国际象棋程序奠定了基础,导致在 20 世纪 90 年代发展出了可以与世界冠军竞争的大师级机器。

励志故事:图灵的秘密

您知道计算机科学之父是谁吗?你知道阿兰•图灵背后的故事吗?计算机科学之父阿兰图灵的故事是图灵生平的缩影,摘自《图灵的秘密:他的生平、思想及论文解读》。励志故事:图灵的秘密,365语录台词把这篇文章分享给大家,下面就是365语录台词网为你搜集整理的精彩内容,就让我们一起来欣赏一下吧!

2014年6月7日是阿兰·图灵逝世60周年。这个名人故事是图灵生平的缩影,摘自《图灵的秘密:他的生平、思想及论文解读》。

阿兰•图灵(1912—1954)是英国数学家、逻辑学家,被称为计算机科学之父、人工智能之父,是计算机逻辑的奠基者,提出了“图灵机”和“图灵测试”等重要概念。为纪念他在计算机领域的卓越贡献,美国计算机协会于1966年设立图灵奖,此奖项被誉为计算机科学界的诺贝尔奖。 1912年6月23日,阿兰·图灵生于伦敦,是家中的第二个男孩。

1926年图灵进入公立学校舍伯恩学习。他害羞、孤独,似乎总是衣衫不整,学习上也没有表现得特别优异。只有在数学上,他的智力天赋初露端倪。1929年,图灵开始着迷于《物理世界的自然》(1928)一书。期间认识克里斯托弗·莫科姆,并交往密切,他们在科学和数学上有着共同的兴趣。回想起来,图灵很可能在那时发现了他的同性恋倾向。

1929年12月,图灵和克里斯托弗共同参加了剑桥大学奖学金考试,随后克里斯托弗被三一学院录取,图灵落榜。但两个月后,克里斯托弗突然生病,在一周内去世。一位舍伯恩的旧日同窗在信中写道:“可怜的图灵因为这个打击几乎崩溃,他们一定是极其要好的朋友。”

1930年12月,图灵再次参加了三一学院的考试,仍然未被录取。他调整目标,瞄准第二选择剑桥大学国王学院,全心钻研G. H. 哈代的经典著作《纯数学教程》备考。1931年秋,图灵开始了他在剑桥大学国王学院的学习。

1935年春,图灵修读了麦克斯·纽曼的“数学基础”课程,课程涵盖了尚未解决的判定性问题。同年夏天,图灵开始研究判定性问题。

图灵的毕业论文发表在伦敦数学学会1936年11月和12月的论文集里,这就是图灵流芳百年的“OnComputable Numbers, with an Application to the Entscheidungsproblem”(论可计算数及其在判定性问题上的应用)。他的论文采用了一种不同寻常的数学证明方法,甚至创造了一个通用机器,它能模拟其他任何一台计算机器的操作。

毕业后图灵来到美国普林斯顿大学攻读数学博士学位,期间他对密码学产生了兴趣。

1939年9月1日,德国入侵波兰,第二次世界大战爆发。两天后,英国向德国宣战。9月4日,图灵受邀到英国政府情报破译中心布莱切利庄园报到,致力于破译德国海军的密码。1940年,第一台“图灵Bombe”开始运行。它重达一吨,可模拟30台并行运行的恩尼格玛密码机。1941年,德军恩尼格玛加密的通信被攻破,图灵在其中起到了重要作用。

1943年初,图灵到贝尔实验室待了两个月,在这里遇到了开辟数位采样理论的哈利·奈奎斯特和克劳德·香农。

1951年3月15日,因在可计算数方面所做的工作,图灵被评为英国皇家学会会士,举荐人是麦克斯·纽曼和伯特兰·罗素。

1952年2月,因同性恋行为,警方传讯了图灵。最终,法庭判处图灵“严重猥亵罪”,且强制实施荷尔蒙治疗。图灵的择业因此受到限制,计算机之路也严重受阻。

1954年6月7日晚,睡前,图灵照例吃下苹果,但是,这只苹果蘸上了剧毒氰化物,41岁的天才就此了结了自己的一生。

2009年9月10日,英国前首相戈登·布朗代表英国政府为图灵当年受到的不公正待遇公开致歉。2013年12月24日,英国女王伊丽莎白二世为图灵追授死后赦免状。

由Windows编程大师Charles Petzold耗时多年编写的《图灵的秘密:他的生平、思想及论文解读》剖析了现代计算机原理开山之作、阿兰•图灵流芳百世的论文 “On Computable Numbers, with an Application to the Entscheidungsproblem”。图灵在其中描述了一种假想的计算机器,探索了其功能和内在的局限性,由此建立了现代程序设计和可计算性的基础。这本书也像是一本小说,行文间穿插讲述了图灵的成长经历和教育背景,以及他跌宕起伏的一生,包括破解德国恩尼格密码的传奇经历,他对人工智能的探索,他的性取向,以及最终因同性恋的罪名而在41岁时自杀的悲惨结局。全书完整揭示了阿兰•图灵非凡、传奇而悲剧的一生,是了解图灵的思想和生平的极好著作。(365语录台词网为您编辑发布,喜欢我请持续关注)

密码那些事儿|(十七)年轻数学家首次破解恩尼格玛机

受影视文学作品影响,提到年轻数学家破解恩尼格玛机,人们的脑海中都会浮现出图灵的名字。不可否认,图灵为最终破解恩尼格玛机确实做出了巨大的贡献,但那是他站在了“巨人的肩膀上”。事实上,在图灵之前,首次破解恩尼格玛机要归功于三位年轻的数学家,他们全部来自波兰。

一战后世界处于暂时的停火状态,波兰位于德国和苏联之间,属于在两个大国的夹缝中求生存。东边经常被苏联渗透,西边的德国又谋划着收复失地,所以波兰的警惕性极高,总感觉随时会被两边的强敌攻陷,从没放松过密码学研究。这种威胁下的恐惧感给了他们破解恩尼格玛机的最大动力。

1929年1月,波兰波兹南大学数学系的一群20多岁的大学生和部分研究生被要求宣誓保密,然后开始学习一门密码学课程。他们每周上两个晚上的课,在几星期后就开始破解各种密码,无法完成破解功课的学生则会被淘汰。最终只剩下了三名优秀者,他们分别是雷杰夫斯基、齐加尔斯基和鲁日茨基。

正是这三位年轻的波兰数学家,破译了曾经被认为不可能被破译的初代恩尼格玛机,其中尤以雷杰夫斯基居功至伟——他建立了破解恩尼格玛机的数学方程。

在破解之前,波兰密码局通过情报渠道掌握了德国人使用恩尼格玛机的一些规定:

1.相互间进行通信的恩尼格玛机都有相同的初始设定,其中包括转子的排列和起始位置,初始设定每天变更一次,操作员每个月都会收到一本新的密码簿,上面记录着每天的初始设定;

2.发报员在每发一份电文前,先按密码簿上的当天设定,初始状态为QCW(假设),然后脑子里随意想3个字母,比如说ABC,用设置成QCW状态的机器给ABC加密,比如说加密后ABC变成了BMW。但一次还不够,还要再加密一次,比如第二次ABC又变成了FTN。然后把两次加密的结果并列写一起,形成BMWFTN;

3.收报员收到加密的电文后,先把自己密码机的转子调到当天规定的起始位置,然后输入密文的前6个字母BMWFTN,解密得到ABC,再把3个转子调到ABC的位置,开始解密正式的电文。

通过这些情报,雷杰夫斯基发现: 从数学的角度来看,密码机的作用就是对26个字母进行置换。

随后,他又根据19世纪法国天才数学家伽罗瓦(这位哥们也是密码学史上的重要人物)的“置换群”代数理论——n个元素的所有置换通过合成关系形成为一种代数结构,建立了恩尼格玛机的“置换群”方程。

比如:字母a被加密成x,字母b被加密成y,字母c被加密成z,就形成了三个置换方程:

T(a)=x,T(b)=y,T(c)=z。解出这个方程的解,也就找到了破解恩尼格玛机的关键。

但是这种置换群的结构仍然十分复杂,想求解也是十分困难。雷杰夫斯基又根据恩尼格玛机的特点,发现了两个限定条件:

第一个条件是由于反射器的作用,恩尼格玛机加密与解密的过程完全一致,也即是T(a)=x与T(x)=a是一致的;

第二个条件是操作规程中的前6个字母。比如,某一天密文的前6个加密字符是BMWFTN,那就可以假设加密前的明文为ABCABC,ABC这三个字母就是该电文的密钥,也就是加密电文时3个转子的初始位置参数。

那么把它用置换方程描述出来就是,T1(A)=B,T2(B)=M,T3(C)=W,T4(A)=F,T5(B)=T,T6(N)=N。

根据第一个条件,就可以转化为,T4(T1(A))=F,T5(T2(B))=T,T6(T3(C))=N。

雷杰夫斯基把这三个置换称为这一天密码的“特征集”,想知道T1、T2、T3、T4、T5、T6,只需要把特征集置换的所有对换总结出来就可以了。

具体的工作就是,把当天截获的信息中,所有可以对应的字母都找出来。

假设波兰人截获四封电文,其中每封电文的开头六个字母分别为:

根据上述的操作方式,每封电文的第一个和第四个字母是同一字母加密而来,于是通过上面四封电文,我们可以得到第一个及第四个字母的联系如下:

如果每天可以得到足够多的电文,那么上面的关系表便可以补充完整如下:

仔细观察这个表格,我们不难发现字母关系中会有如下循环:

同样对第二和第五,第三和第六个字母我们也可以写出类似的循环。

而且三位数学家还进一步发现,这种循环,也即由每天的密钥决定的特征集,当中所包含的环的长度和个数只与转子的排列和初始位置有关。

于是他们决定把所有的特征集按其所包含的环的长度和个数分类。为此雷杰夫斯基在恩尼格码的基础上设计了一台能同时验证所有转子位置的机器,取名为炸弹(La Bomba)。经过一年多的连续运行记录,终于收集到了全部数据。这样,波兰人便从每日截获的大量电文中写出字母循环圈,然后根据循环圈的数目和长度从记录表中检索出相对应的转子位子,即是当日的密钥。

至此,第一代恩尼格玛机被全部破解。以后几年,波兰密码局每天都能破译大量的德军情报。

上面对雷杰夫斯基的工作的介绍是极其简单化的,只以举例的形式介绍了其中最重要的思路。雷杰夫斯基对于ENIGMA的分析是在密码分析史上最重要的成就之一,整个工作都是严格地数学化了的(求解关于置换矩阵的方程),决非上面所举例子可以包含。比如说,找到当日密钥中转子状态后,还需要找到连接板状态,才能真正译出密文。

为了表彰雷杰夫斯基、齐加尔斯基和鲁日茨基的功勋,2000年时他们被追授了“波兰复兴大十字勋章”。在2005年雷杰夫斯基诞辰100周年时,他的家乡比得哥市还为他建立了一座铜像,以纪念他在破解恩尼格玛机中的丰功伟绩。

往期文章:

密码那些事儿|(十六)二战中大放异彩的“超级情报”

密码那些事儿|(十五)坚持就是胜利——初代恩尼格玛机

密码那些事儿|(十四)古典密码的巅峰——恩尼格玛机

密码那些事儿|(十三)尴尬的维吉尼亚3.0

密码那些事儿|(十二)短命的维吉尼亚2.0

密码那些事儿|(十一)南北战争时的维吉尼亚密码较量

密码那些事儿|(十)“钥匙”打开维吉尼亚的锁

密码那些事儿|(九)维吉尼亚登场

密码那些事儿|(八)玛丽女王被密码改变的人生

密码那些事儿|(七)以频率之矛,攻移位之盾

密码那些事儿|(六)中外古时候的移位加密

本人是官方授权会员推广专员,点击 会员专属通道 成为会员,您将会获得钻奖励及诸多权益!

《钻奖励调整公告》

密码那些事儿|(二十一)再下一城,图灵破解最高级别恩尼格玛机

在布莱切利园中,德国海军的恩尼格玛密码一直被认为是最难以破解的。

德国海军历来极其重视无线通信的可靠性和保密性,就是他们率先使用了恩尼格玛机来加密。而且,德国海军还频繁地在结构和操作方式上对恩尼格玛机进行改进,以确保它无懈可击、牢不可破。

第二次世界大战前夕,德国陆军和空军将恩尼格玛机的转子从3个增加到了5个,而德国海军则是继续增加到了7个,最后更是丧心病狂的增加到了8个。

而且,德国海军还使用了与陆军及空军不一样的新操作规程,主要包括两个方面:

一、增加“密钥手册”,规定每天0点更新初始参数。

(a)选择8个转子中的3个并规定其基左中右位置;

(b)设定各转子的内外轮之间的相对位置;

(c)设定接线板上的10对接线;

(d)设定3个转子的初始位置。

二、采用“双字替换表”

(a)发报前,先从密钥手册中选3个字母,比如ABC,作为密钥,然后把恩尼格玛机的3个转子调到当天规定的初始位置,输入ABC,假设得到FTN,再把转子调到FTN的位置,开始加密正式电文;

(b)再从密钥手册中选另一组字母,比如XYZ,在XYZ的左边和密钥ABC的右边任意增加一个字母,比如P、Q,列成两行,上下对齐。

P X Y Z 

A B C Q

(c)根据当天有效的“双字替换表”把各列的字母对PA、XB、YC、ZQ分别替换,比如替换成IS、OW、MD、UV;

(d)发送电报时,把这4对字母加在正式密文的首尾;

(e)对方接收到电报后,先对4对字母反向操作,得到3个字母ABC,再得到FTN,然后开始解密正文。

这样一来,原来重复加密3个字母密钥的操作就不存在了,以致雷杰夫斯基发明的破解方法完全失效。

在图灵来到布莱切利园之前,几乎所有人都认为德国海军的密码是无法破译的,因此没有人愿意为它浪费时间。图灵到来之后,发明了基于crib方法的“炸弹”机,理论上是可以对德国海军的密码进行破译的,但由于早期的“炸弹”机性能过低,所以破解的效率极为低下。

当时德国的U-潜艇正在严重威胁盟军的大西洋生命线,寻找有效的破解德国海军密码的方法变得刻不容缓。经过一段时间的摸索和研究,图灵终于发明了基于贝叶斯统计原理的“班布里方法”,能够有效破解德国海军的恩尼格玛机。

班布里方法基于语言学中的一个统计事实:把任意两段文字拿来排成行上下对齐进行比较,查看其中有多少对字母是相同的;当这两段文字属于同一编码系统时出现相同字母对的概率,明显高于当它们不属于同一编码系统时的相应概率。

基于这个原理,图灵找到了破解德国海军恩尼格玛机的途径。不过图灵所用的方法包含了大量数学理论,过程也相当繁琐,这里就不详细表述了,我们只说一下图灵的大致思路。

首先,通过对比分析大量的电文头尾的明文字母,部分甚至完全破解“双字替换表”,从而获得电文密钥;

其次,用班布里方法,确定右边转子是8个转子中的哪一个;

再次,重复使用班布里方法,进一步确定中间转子是哪一个;

最后,用“炸弹”机破解全部密文。

这个步骤被验证是行之有效的,图灵就这样搞定了最高级别的德国海军恩尼格玛机。

1940年5月8日,用班布里方法破解德国海军密码首次获得成功。以后的三年里,此方法结合“炸弹”机成为英国破解德国海军密码的主要手段,为盟军重创德国U-潜艇舰队、守住大西洋生命线做出了巨大贡献。

据不完全统计,破解之后,盟军全年被击沉船只的吨位下降了60%;而德军潜艇的损失率,从破译前的不到7%,猛增到50%。

更多文章:

密码那些事儿|(二十)破解恩尼格玛机的图灵方法

密码那些事儿|(十九)在人性与规则中找寻漏洞

密码那些事儿|(十八)跨越英吉利海峡的恩尼格玛机

密码那些事儿|(十七)年轻数学家首次破解恩尼格玛机

密码那些事儿|(十六)二战中大放异彩的“超级情报”

密码那些事儿|(十五)坚持就是胜利——初代恩尼格玛机

密码那些事儿|(十四)古典密码的巅峰——恩尼格玛机

密码那些事儿|(十三)尴尬的维吉尼亚3.0

密码那些事儿|(十二)短命的维吉尼亚2.0

密码那些事儿|(十一)南北战争时的维吉尼亚密码较量

密码那些事儿|(十)“钥匙”打开维吉尼亚的锁

本人是官方授权会员推广专员,点击 会员专属通道 成为会员,您将会获得钻奖励及诸多权益!

《钻奖励调整公告》