图灵是一个外国人名。
艾伦·麦席森·图灵(Alan Mathison Turing,1912年6月23日-1954年6月7日),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。
1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,第二次世界大战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。
扩展资料:
2013年12月24日,在英国司法大臣克里斯·格雷灵(Chris Grayling)的要求下,英国女王向图灵颁发了皇家赦免。
英国司法大臣宣布,“图灵的晚年生活因为其同性取向(同性恋)而被迫蒙上了一层阴影,我们认为当时的判决是不公的,这种歧视现象现在也已经遭到了废除。为此,女王决定为这位伟人送上赦免,以此向其致敬。”
图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,至今,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。
1926年,图灵考入英国著名的谢伯恩公学,在中学时就获得了国王爱德华六世数学金盾奖章。
1932年,荣获英国著名的史密斯数学奖。
1946年,由于他在二战中为破译德军密码做出的巨大贡献,获得“不列颠帝国勋章”,这是英国皇室授予为国家和人民做出巨大贡献者的最高荣誉勋章。
参考资料:艾伦·麦席森·图灵-百度百科
阿兰-图灵(Alan Turing)英国数学家、逻辑学家,被称为计算机之父,人工智能之父。1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,至今,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。
1912年6月23日,出生于英国伦敦。
1931年-1934年,在英国剑桥大学国王学院(King’s College)学习。
1932年-1935年,主要研究量子力学、概率论和逻辑学。
1935年,年仅23岁的图灵,被选为剑桥大学国王学院院士。
1936年,主要研究可计算理论,并提出“图灵机”的构想。
1936年-1938年,主要在美国普林斯顿大学做博士研究,涉及逻辑学、代数和数论等领域。
1938-1939年,返回剑桥从事研究工作,并应邀加入英国政府破译二战德军密码的工作。
1940年-1942年,作为主要参与者和贡献者之一,在破译纳粹德国通讯密码的工作上成就杰出,并成功破译了德军U-潜艇密码,为扭转二战盟军的大西洋战场战局立下汗马功劳。
1943年-1945年,担任英美密码破译部门的总顾问。
1945年,应邀在英国国家物理实验室从事计算机理论研究工作。
1946年,这个时候,图灵在计算机和程序设计原始理论上的构思和成果,已经确定了他的理论开创者的地位。由于图灵的杰出贡献,年轻的他被英国皇室授予OBE爵士勋衔。
1947年-1948年,主要从事计算机程序理论的研究,并同时在神经网络和人工智能领域做出开创性的理论研究。
1948年,应邀加入英国曼彻斯特大学从事研究工作,担任曼彻斯特大学计算实验室副主任。
1949年,成为世界上第一位把计算机实际用于数学研究的科学家。
1950年,发表论文“计算机器与智能”,为后来的人工智能科学提供了开创性的构思。提出著名的“图灵测试”理论。
1951年,从事生物的非线性理论研究。年仅39岁的图林,被选为英国皇家学会会员。
1952年,在当年保守愚昧和冷战的时代,当警察得知图灵与同性朋友密切交往的消息之后,同性恋倾向的图灵被逮捕入狱。在法庭审判过程中,图灵明确告知人们,他认为自己没有做错什么事。在那个观念落后的年代,为了避免被判刑入狱,图灵被迫选择了为期一年的雌性激素注射的所谓“治疗”,才得以重新返回研究工作。
1953年-1954年,继续在生物和物理学等方面的研究。被迫承受的对同性恋倾向的“治疗”,致使原本热爱体育运动的图灵在身心上受到极大的伤害。
1954年6月7日,图灵被发现死于家中的床上。死因是氰化物中毒,警方调查结论是自杀。一代英灵,就此过早离去,成为人类科学史上的一大遗憾。
CCCF第7期专题邀请了相关领域的6位专家学者深入探讨图灵对密码学发展的深远影响和密码学的前沿进展,涵盖了密码设计与密码分析这两个密码学的组成部分,同时兼顾了广度与深度。各专题文章原文详见CCF数字图书馆。
关键词: 密码学 图灵 网络空间安全 信息安全
从早期作为一种实用性技术,到今天发展为一门严谨的学科,密码学的发展史汇聚了人类文明的聪明才智。围绕着如何使用密码实现安全和隐私保护与如何安全地使用密码这两个本质问题,密码的设计与分析相互依存,相互促进,处在不断的博弈中,这使得密码的研究得到了持续的发展。
在发展过程中,计算机科学之父艾伦·图灵(Alan M. Turing)做出了多方面本质的贡献,对密码学的成熟产生了深远的影响。首先,在密码安全定义建模方面,图灵的可计算性理论及其发明的(通用)图灵机起着重要的作用。例如,我们知道在现代密码中,设计者首先需要证明其提出的密码算法或者协议可以抵御所有的已知和未知的攻击。然而,有很多密码算法或者协议无法证明自己是安全的,但也无法找到安全漏洞。在这种情况下,是设计者没有找到正确的证明方法呢?还是这个密码算法或者协议本身就不可能被证明呢?图灵奠基的可证明性理论对这些问题给出了答案,那就是很多我们无法证实或者证伪的密码算法或者协议,并不是由于设计者缺少正确的证明方法,而是这个密码算法或者协议本身就不可能在有限步骤内被证明。这就要求设计者不断地对其密码算法或者协议进行修改,使得其能被证明。此外,图灵发明的(通用)图灵机也被广泛应用于密码算法或协议敌手模型中对敌手的建模,使对敌手的运算时间约束可以转化成对于算法的计算步骤限制。目前被密码学界广泛接纳的通用可组合安全模型(universal composability)就是通过多项式时间通用图灵机来模拟敌手的。
本期专题邀请了相关领域的专家学者深入探讨图灵对密码学发展的深远影响和密码学的前沿进展,共组织了六篇文章,涵盖了密码设计与密码分析这两个密码学的组成部分,同时兼顾了广度与深度。
第一篇文章是由英国兰卡斯特大学助理教授张秉晟和浙江大学研究员秦湛联合撰写的《通用图灵机及其对现代密码安全建模的影响》,以(通用)图灵机的计算理论为切入点,深入浅出地分析(通用)图灵机对密码学基本算法工具的安全定义和对密码协议的安全性建模产生的深远影响。作者介绍了密码学中的加密算法是如何从AES时代逐渐演化到现在的可证明安全定义以及(通用)图灵机在其中起到的作用。另外,作者还梳理了密码协议,例如安全多方计算的安全性建模和定义是如何通过几十年的研究探讨演化到如今的通用可组合安全模型,重点解析了交互式图灵机对整个通用可组合安全模型构架的奠基作用。
第二篇文章是由山东大学教授王美琴等撰写的《从图灵破解Enigma到现代密码分析》,介绍了Enigma密码机的工作原理和图灵对Engima密码机的破解,并且解析了Enigma密码机的破解对现代密码分析的影响。作者还以针对哈希函数的破解实例来呈现现代密码分析对安全密码算法设计的重要性。
第三篇文章是由中国科学院信息工程研究所研究员胡磊和副研究员宋凌撰写的《密码杂凑函数的回顾与进展》,介绍了用于实现密码学研究中的完整性和认证性的一类关键密码学函数——密码杂凑函数(又称哈希函数、散列函数等)。作者阐述了密码杂凑函数的性质及其具体应用,梳理了密码杂凑函数的发展脉络,总结了密码分析对密码杂凑函数标准化的影响,并具体介绍美国国家标准与技术研究院(NIST)杂凑函数标准SHA-3及其最新分析进展。
第四篇文章是由香港城市大学副教授王聪和武汉大学教授王骞等联合撰写的《安全多方计算理论与实践》,从理论和实践的双重角度对安全多方计算进行深入的解析。作者从生动的现实问题入手,介绍了安全多方计算的系统模型、安全模型以及理论上的普适性解决方案。同时,文章还梳理了安全多方计算在实际应用中的前沿进展,总结了当前安全多方计算应用的现状,指出了未来安全多方计算的研究方向。
第五篇文章是由美国新泽西理工学院助理教授唐强和哥伦比亚大学教授慕梯·杨(Moti Yung)联合撰写的《抗后门的新一代密码学Cliptography研究进展》,对密码学的通用后门攻击Kleptography进行了系统的总结,并且介绍了抗后门密码学Cliptography的前沿进展。作者先阐述了密码学后门背后的科学原理,回答了如何在设计之初就考虑到这种可能的后门攻击问题,进而介绍了抗后门密码学Cliptography如何弥合这个密码学理论设计与实际实现之间的鸿沟,并对新一代密码学理论基础和密码标准提出新的建议。
第六篇文章是由浙江大学副教授张帆、上海交通大学教授谷大武等撰写的《人工智能之于旁路分析》,介绍了人工智能技术在密码旁路分析领域的研究现状,梳理了机器学习算法在旁路分析领域的发展过程,剖析了人工智能技术在密码旁路分析领域取得成果的原因,并指出了将人工智能技术与旁路分析领域结合的研究方向。
希望本专题能鼓舞更多的学者和安全从业人员参与到网络空间安全和信息安全的研究中,设计与分析新密码算法和协议,开拓新的研究方向和领域。
作者介绍
任 奎
CCF专业会员。浙江大学网络空间安全研究中心主任,国家千人计划特聘教授。主要研究方向为数据安全,云安全,人工智能安全,物联网安全等。kuiren@zju.edu.cn
CCF推荐
【精品文章】
点击 “阅读原文” ,前往CCF数图相关栏目。
数学家艾伦·图灵的理论描述了所有脊椎动物共享的原始发育工具箱,它为所有类型的皮肤结构设定了生长模式。1952年在发育生物学家谈论Hox基因和转录因子,甚至理解DNA结构的很久之前,艾伦·图灵就有了一个大胆的想法。这位著名的数学家通过破解恩尼格玛密码加速了第二次世界大战的结束。他的理论概括了条纹、斑点和鳞片是如何在两种简单的假想化学物质或形态因子的相互作用下形成。几十年过去了,生物学家们才察觉到这个数学理论实际上可以解释无数的生物模式。
博科园-科学科普:哺乳动物的毛发、鸟类的羽毛,甚至人类嘴巴上的隆起物,都是由类似图灵的机制进化而来。现在小齿——覆盖在鲨鱼皮肤上像牙齿一样的突出物,或许也能被列入图灵机制的行列。佛罗里达大学(University of Florida)的研究人员最近发现,鲨鱼牙齿由一种类似图灵(turning)机制形成,这种机制由负责形成羽毛图案的相同基因控制。领导研究的研究者加雷思·弗雷泽认为,不同脊椎动物的发育胚胎以同样的方式在其组织外层确定了特征模式,这种模式形成机制很可能随着第一批脊椎动物进化而诞生,此后发生很小变化。
这是一张被染色的猫鲨幼崽照片,图中显示了它的“皮肤齿状”齿纹。靠近背鳍的两行平行线显示了小齿本质的起源。然后小齿本质展开,在身体的其余部分呈现点状,以配合图灵样的机制作用。 图片:Alexandre Thiery, University of Sheffield
哈佛大学(Harvard)发育生物学家亚历山大·席尔(Alexander Schier)说:这项研究的美妙之处在于,从鲨鱼牙齿到鸟类羽毛,形成任何东西的机制,都可能受到非常有力的保护。研究还支持了发展生物学中一个不断上升的主题——大自然往往会创造出一些东西,然后在这个主题上进行变异。图灵的模型叫做反应扩散机制,它只需要两种相互作用的物质,激活剂与抑制剂,就可以像墨水在水里一样通过组织扩散。激活剂启动某些过程,如点的形成,并促进其自身的产生。抑制剂可以停止这两种作用。抑制剂比激活剂在组织中传播得更快。根据激活剂和抑制剂释放的确切时间和地点,激活剂将按照规则间隔排列形成圆点、条纹或其他图案。
澳大利亚科廷大学发育生物学家凯瑟琳·博伊斯维尔(Catherine Boisvert)解释说:激活抑制系统是强大的发育基序。如果想要建立一个完整结构,例如羽毛或小齿,排列就不能过度拥挤;如果没有间隔,就永远得不到一个不同的实体。图灵模型让发展生物学家兴奋不已,尽管它很简单,但它可以解释很多不同的模式。然而在实践中,自然界模式的实例很少被证明明确地按照类似图灵的机制运行。列举两个实例:老鼠毛囊位置和小鸡羽毛位置。在一只正在发育的雏鸟身上,原始羽毛依次长出,在雏鸟背上形成一条直线。最先生长的那一行刺激了其他平行的产生,这些平行沿着胚胎的两侧层叠而下,直到胚胎被覆盖。
鲨鱼幼仔牙齿的特写图,左图展示了牙齿如何像鳞片一样保护身体。对幼鲨头部牙齿的扫描显示了图灵的排列方式。图片:Rory Cooper (left); rendered by Rory Cooper, scanned by Kyle Martin and Amin Garbout at The Imaging and Analysis Centre, Natural History Museum, London
研究人员知道起激活和抑制作用的分子,证实了这一过程类似图灵模式。弗雷泽实验室(Fraser lab)的研究生罗里库珀(Rory Cooper)认为:鲨鱼的牙齿似乎也在发育。然而鲨鱼,以及它们的近亲——鳐鱼,在4.5亿年前从脊椎动物中分离出来。它们栖息在生命之树上一个非常有趣的地方。鲨鱼为早期脊椎动物的发展提供了一个视角。在哺乳动物长出毛发和鸟类长出羽毛的数亿年前,鲨鱼“鳞片”就像盔甲一样覆盖着它们的皮肤。(它们是现存最古老的脊椎动物,有各种皮肤附属物)鲨鱼牙齿的图案、形态和功能多种多样:密集重叠的牙齿为一些鲨鱼提供了额外的保护,稀疏和光滑的部分则减少了鲨鱼的拖曳力。
在一些鲨鱼物种中,牙齿甚至含有有助于交流的发光细菌。然而,尽管有一些细微差异,但牙齿、头发和羽毛之间发育模式的相似性不可否认。为了证明鲨鱼的齿状图案,理论上可以由图灵机制产生,弗雷泽的同事们建立了激活剂和抑制剂相互作用的数学模型。研究人员对两种形态因子的扩散、产生和降解速率进行了修改,直到该模型产生了与鲨鱼皮肤发育相匹配的模式。这个模型告诉我们,从理论上讲,类似图灵的机制可以解释鲨鱼齿状图案模式形成。我们不知道小齿发育的分子基础,是否与羽毛的分子基础一样。然而,考虑到发育的相似性,小鸡的基因是一个很好的起点。当库珀使用原位杂交技术,发现同样的基因在小鸡和鲨鱼模式形成过程中会发光。
鲨鱼胚胎上牙齿的排列(左)与研究人员的数学图灵模型所产生的模式非常相似。图片:doi: 10.1126/sciadv.aau5484
这些基因不仅在牙齿萌发的时候表达,实际上它们还在相同的组织层中表达,这是一种很强的保护作用。在相似过程中展示出相似的基因表达是很好的第一步,但在发育生物学中证明的黄金标准是一个简单的实验:如果减少或消除一个基因表达,然后这个模式就消失,那么这个基因必须在模式产生中扮演重要角色。为了做到这一点,库珀加入了一种抑制小鸡羽毛激活剂的化学物质。然后原始牙齿一起植入鲨鱼胚胎中,观察鲨鱼的成长。结果很明显,这些为了抑制鸟类体内激活基因表达而设计,它们可以跨越数亿年的进化过程,在鲨鱼体内产生同样的效果。库珀发现激活因子基因的表达直线下降,形成了一个扁平的“死区”,没有牙齿。这些操纵结果有力地证明这种机制的高度保守。
为了测试类似图灵机制是否能在其他鲨鱼和它们的同类中产生广泛的齿状结构,研究人员调整了模型中激活剂和抑制剂的产生、降解和扩散速率。发现,相对简单的变化可以产生与该谱系中所见多样性相匹配的模式。例如,鳐鱼的齿形往往比较稀疏,通过增加抑制剂的扩散速率或降低抑制剂的降解速率,研究人员可以得到更稀疏的图案。一旦初始模式设置好,其他非图灵机制就完成了这些行到完全成形的齿、羽毛或其他上皮附属物的转换。布瓦弗特解释说:这些高度保守的主调控机制,在附属物发育的早期就发挥作用,但在下游,物种特有的机制会完善这种结构。
尽管如此,在分子生物学知之甚少的时代,一位没有受过生物学训练的数学家将如此多不同生物学模式背后的机制理论化,这是多么了不起的一件事情。图灵机制理论上不是构建模式的唯一方法,但大自然似乎更倾向于它。弗雷泽认为,如此多分布广泛的生物群体对这一机制的依赖表明,某种约束可能在起作用:可能没有太多方法可以模仿一些东西。一旦像图灵机一样简单和强大的系统出现,自然就会顺势而为,不可逆转。总的来说,生物多样性是建立在一套相当有限的理论基础上,这些理论似乎有效,而且在进化过程中反复被使用。大自然,以其旺盛的创造力,可能比我们想象的更为保守。