我知道的有一种叫做双重密码,即a君加密后给b君,之后b 君在加密后还给a君,之后a君解开自己的密后,还给b君,b君解开自己的密后即可知道a君的情报。这样可以避免密钥的传递,有效提高安全性,现在的加密方法多用多重加密即此方法的变种,计算机中也有所运用。
对于密码分析的结果来说,其有用的程度也各有不同。密码学家Lars Knudsen于1998年将对于分组密码的攻击按照获得的秘密信息的不同分为以下几类:
完全破解 -- 攻击者获得秘密钥匙。 全局演绎 -- 攻击者获得一个和加密和解密相当的算法,尽管可能并不知道钥匙。 实例(局部)演绎 -- 攻击者获得了一些攻击之前并不知道的明文(或密文)。 信息演绎 -- 攻击者获得了一些以前不知道的关于明文或密文的香农信息。 分辨算法 -- 攻击者能够区别加密算法和随机排列。 对于其它类型的密码学算法,也可以做出类似的分类。
可将密码分析分为以下五种情形。
(1)惟密文攻击(Ciphertext only)
对于这种形式的密码分析,破译者已知的东西只有两样:加密算法、待破译的密文。
(2)已知明文攻击(Known plaintext)
在已知明文攻击中,破译者已知的东西包括:加密算法和经密钥加密形成的一个或多个明文—密文对,即知道一定数量的密文和对应的明文。
(3)选择明文攻击(Chosen plaintext)
选择明文攻击的破译者除了知道加密算法外,他还可以选定明文消息,并可以知道对应的加密得到的密文,即知道选择的明文和对应的密文。例如,公钥密码体制中,攻击者可以利用公钥加密他任意选定的明文,这种攻击就是选择明文攻击。
(4) 选择密文攻击(Chosen ciphertext)
与选择明文攻击相对应,破译者除了知道加密算法外,还包括他自己选定的密文和对应的、已解密的原文,即知道选择的密文和对应的明文。
(5)选择文本攻击(Chosen text)
选择文本攻击是选择明文攻击与选择密文攻击的结合。破译者已知的东西包括:加密算法、由密码破译者选择的明文消息和它对应的密文,以及由密码破译者选择的猜测性密文和它对应的已破译的明文。
很明显,惟密文攻击是最困难的,因为分析者可供利用的信息最少。上述攻击的强度是递增的。一个密码体制是安全的,通常是指在前三种攻击下的安全性,即攻击者一般容易具备进行前三种攻击的条件。
密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。
密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。
密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。
进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:错乱——按照规定的图形和线路,改变明文字母或数码等的位置成为密文;代替——用一个或多个代替表将明文字母或数码等代替为密文;密本——用预先编定的字母或数字密码组,代替一定的词组单词等变明文为密文;加乱——用有限元素组成的一串序列作为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单独使用,也可混合使用 ,以编制出各种复杂度很高的实用密码。
20世纪70年代以来,一些学者提出了公开密钥体制,即运用单向函数的数学原理,以实现加、脱密密钥的分离。加密密钥是公开的,脱密密钥是保密的。这种新的密码体制,引起了密码学界的广泛注意和探讨。
利用文字和密码的规律,在一定条件下,采取各种技术手段,通过对截取密文的分析,以求得明文,还原密码编制,即破译密码。破译不同强度的密码,对条件的要求也不相同,甚至很不相同。
中国古代秘密通信的手段,已有一些近于密码的雏形。宋曾公亮、丁度等编撰《武经总要》“字验”记载,北宋前期,在作战中曾用一首五言律诗的40个汉字,分别代表40种情况或要求,这种方式已具有了密本体制的特点。
1871年,由上海大北水线电报公司选用6899个汉字,代以四码数字,成为中国最初的商用明码本,同时也设计了由明码本改编为密本及进行加乱的方法。在此基础上,逐步发展为各种比较复杂的密码。
在欧洲,公元前405年,斯巴达的将领来山得使用了原始的错乱密码;公元前一世纪,古罗马皇帝凯撒曾使用有序的单表代替密码;之后逐步发展为密本、多表代替及加乱等各种密码体制。
二十世纪初,产生了最初的可以实用的机械式和电动式密码机,同时出现了商业密码机公司和市场。60年代后,电子密码机得到较快的发展和广泛的应用,使密码的发展进入了一个新的阶段。
密码破译是随着密码的使用而逐步产生和发展的。1412年,波斯人卡勒卡尚迪所编的百科全书中载有破译简单代替密码的方法。到16世纪末期,欧洲一些国家设有专职的破译人员,以破译截获的密信。密码破译技术有了相当的发展。1863年普鲁士人卡西斯基所著《密码和破译技术》,以及1883年法国人克尔克霍夫所著《军事密码学》等著作,都对密码学的理论和方法做过一些论述和探讨。1949年美国人香农发表了《秘密体制的通信理论》一文,应用信息论的原理分析了密码学中的一些基本问题。
自19世纪以来,由于电报特别是无线电报的广泛使用,为密码通信和第三者的截收都提供了极为有利的条件。通信保密和侦收破译形成了一条斗争十分激烈的隐蔽战线。
1917年,英国破译了德国外长齐默尔曼的电报,促成了美国对德宣战。1942年,美国从破译日本海军密报中,获悉日军对中途岛地区的作战意图和兵力部署,从而能以劣势兵力击破日本海军的主力,扭转了太平洋地区的战局。在保卫英伦三岛和其他许多著名的历史事件中,密码破译的成功都起到了极其重要的作用,这些事例也从反面说明了密码保密的重要地位和意义。
当今世界各主要国家的政府都十分重视密码工作,有的设立庞大机构,拨出巨额经费,集中数以万计的专家和科技人员,投入大量高速的电子计算机和其他先进设备进行工作。与此同时,各民间企业和学术界也对密码日益重视,不少数学家、计算机学家和其他有关学科的专家也投身于密码学的研究行列,更加速了密码学的发展。
发展历程
密码学(在西欧语文中,源于希腊语kryptós“隐藏的”,和gráphein“书写”)是研究如何隐密地传递信息的学科。在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和信息论也密切相关。
著名的密码学者Ron Rivest解释道:“密码学是关于如何在敌人存在的环境中通讯”,自工程学的角度,这相当于密码学与纯数学的异同。密码学是信息安全等相关议题,如认证、访问控制的核心。密码学的首要目的是隐藏信息的涵义,并不是隐藏信息的存在。
密码学也促进了计算机科学,特别是在于电脑与网络安全所使用的技术,如访问控制与信息的机密性。密码学已被应用在日常生活:包括自动柜员机的芯片卡、电脑使用者存取密码、电子商务等等。
密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。
密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。
进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它们是密码编制的重要组成部分。
密码体制的基本类型可以分为四种:错乱按照规定的图形和线路,改变明文字母或数码等的位置成为密文;代替——用一个或多个代替表将明文字母或数码等代替为密文;密本——用预先编定的字母或数字密码组,代替一定的词组单词等变明文为密文。
加乱——用有限元素组成的一串序列作为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单独使用,也可混合使用 ,以编制出各种复杂度很高的实用密码。
20世纪70年代以来,一些学者提出了公开密钥体制,即运用单向函数的数学原理,以实现加、脱密密钥的分离。加密密钥是公开的,脱密密钥是保密的。这种新的密码体制,引起了密码学界的广泛注意和探讨。
利用文字和密码的规律,在一定条件下,采取各种技术手段,通过对截取密文的分析,以求得明文,还原密码编制,即破译密码。破译不同强度的密码,对条件的要求也不相同,甚至很不相同。
其实在公元前,秘密书信已用于战争之中。西洋“史学之父”希罗多德(Herodotus)的《历史》(The Histories)当中记载了一些最早的秘密书信故事。公元前5世纪,希腊城邦为对抗奴役和侵略,与波斯发生多次冲突和战争。
于公元前480年,波斯秘密集结了强大的军队,准备对雅典(Athens)和斯巴达(Sparta)发动一次突袭。
希腊人狄马拉图斯(Demaratus)在波斯的苏萨城(Susa)里看到了这次集结,便利用了一层蜡把木板上的字遮盖住,送往并告知了希腊人波斯的图谋。最后,波斯海军覆没于雅典附近的沙拉米斯湾(Salamis Bay)。
由于古时多数人并不识字,最早的秘密书写的形式只用到纸笔或等同物品,随着识字率提高,就开始需要真正的密码学了。最古典的两个加密技巧是:
置换(Transposition cipher):将字母顺序重新排列,例如‘help me’变成‘ehpl em’。
替代(substitution cipher):有系统地将一组字母换成其他字母或符号,例如‘fly at once’变成‘gmz bu podf’(每个字母用下一个字母取代)。
扩展资料:
研究
作为信息安全的主干学科,西安电子科技大学的密码学全国第一。
1959年,受钱学森指示,西安电子科技大学在全国率先开展密码学研究,1988年,西电第一个获准设立密码学硕士点,1993年获准设立密码学博士点,是全国首批两个密码学博士点之一,也是唯一的军外博士点,1997年开始设有长江学者特聘教授岗位,并成为国家211重点建设学科。
2001年,在密码学基础上建立了信息安全专业,是全国首批开设此专业的高校。
西安电子科技大学信息安全专业依托一级国家重点学科“信息与通信工程”(全国第二)、二级国家重点学科“密码学”(全国第一)组建,是985工程优势学科创新平台、211工程重点建设学科。
拥有综合业务网理论及关键技术国家重点实验室、无线网络安全技术国家工程实验室、现代交换与网络编码研究中心(香港中文大学—西安电子科技大学)、计算机网络与信息安全教育部重点实验室、电子信息对抗攻防与仿真技术教育部重点实验室等多个国家级、省部级科研平台。
在中国密码学会的34个理事中,西电占据了12个,且2个副理事长都是西电毕业的,中国在国际密码学会唯一一个会员也出自西电。毫不夸张地说,西电已成为中国培养密码学和信息安全人才的核心基地。
以下简单列举部分西电信安毕业生:来学嘉,国际密码学会委员,IDEA分组密码算法设计者;陈立东,美国标准局研究员;丁存生,香港科技大学教授;邢超平,新加坡NTU教授;冯登国,中国科学院信息安全国家实验室主任,中国密码学会副理事长。
张焕国,中国密码学会常务理事,武汉大学教授、信安掌门人;何大可,中国密码学会副理事长,西南交通大学教授、信安掌门人;何良生,中国人民解放军总参谋部首席密码专家;叶季青,中国人民解放军密钥管理中心主任。
西安电子科技大学拥有中国在信息安全领域的三位领袖:肖国镇、王育民、王新梅。其中肖国镇教授是我国现代密码学研究的主要开拓者之一,他提出的关于组合函数的统计独立性概念,以及进一步提出的组合函数相关免疫性的频谱特征化定理,被国际上通称为肖—Massey定理。
成为密码学研究的基本工具之一,开拓了流密码研究的新领域,他是亚洲密码学会执行委员会委员,中国密码学会副理事长,还是国际信息安全杂志(IJIS)编委会顾问。
2001年,由西安电子科技大学主持制定的无线网络安全强制性标准——WAPI震动了全世界,中国拥有该技术的完全自主知识产权,打破了美国IEEE在全世界的垄断,华尔街日报当时曾报道说:“中国无线技术加密标准引发业界慌乱”。
这项技术也是中国在IT领域取得的具少数有世界影响力的重大科技进展之一。
西安电子科技大学的信息安全专业连续多年排名全国第一,就是该校在全国信息安全界领袖地位的最好反映。
参考资料来源:百度百科-密码学
计算机技术的进步使数据更易于访问,虽然这可能提供巨大的优势,但它也有缺点。在线数据面临许多威胁,包括盗窃和腐败。密码学(或密码学)是一种可以保护信息免受与数据存储和分发相关的风险的解决方案。这并不是说加密数据的概念是新的。甚至在数字时代之前,人们就一直在屏蔽信息,以防止无意的受众阅读它们。但是计算设备使用的增加将加密科学带到了一个全新的水平。
简而言之,密码学是隐藏信息的科学。更具体地说,现代密码学利用数学理论和计算来加密和解密数据或保证信息的完整性和真实性。
在文本加密的基本过程中,明文(可以清楚理解的数据)经过一个加密过程,将其变成密文(不可读)。通过这样做,可以保证发送的信息只能由拥有特定解密密钥的人读取。
通过使用特定的加密技术,人们甚至可以通过不安全的网络发送敏感数据。加密级别将取决于数据所需的保护程度。例如,用于常规个人文件(如联系人)的安全类型与用于加密货币网络的安全类型不同。
了解密码学的工作原理对于理解其在加密货币系统中的重要性至关重要。大多数区块链系统,例如比特币系统,都使用一组特定的加密技术,使它们能够充当去中心化的公共分类账,通过它可以以非常安全的方式进行数字交易。
现代密码学包括各种研究领域,但其中一些最相关的是处理对称加密、非对称加密、散列函数和数字签名的领域。
比特币协议利用加密证明来保护网络并确保每笔交易的有效性。数字签名保证每个用户只能使用自己钱包的资金,并且这些资金不能多次使用。例如,如果 Alice 向 Bob 发送 2 个比特币,她创建一个交易,本质上是一条消息,确认向 Bob 的钱包添加 2 个比特币,同时从 Alice 的钱包中取出硬币。但是,她只能通过提供数字签名来做到这一点。
比特币协议的另一个重要元素是 Hashcash 函数,它定义了工作量证明共识机制和挖掘过程(负责保护网络、验证交易和生成新硬币)。Hashcash 使用称为 SHA-256 的加密函数。
密码学是区块链技术的重要组成部分,因此对任何加密货币都至关重要。应用于分布式网络的加密证明能够创建去信任的经济系统,从而催生比特币和其他去中心化的数字货币。
在公元前,秘密书信已用于战争之中。西洋“史学之父”希罗多德(Herodotus)的《历史》(The Histories)当中记载了一些最早的秘密书信故事。公元前5世纪,希腊城邦为对抗奴役和侵略,与波斯发生多次冲突和战争。
于公元前480年,波斯秘密集结了强大的军队,准备对雅典(Athens)和斯巴达(Sparta)发动一次突袭。希腊人狄马拉图斯在波斯的苏萨城里看到了这次集结,便利用了一层蜡把木板上的字遮盖住,送往并告知了希腊人波斯的图谋。最后,波斯海军覆没于雅典附近的沙拉米斯湾(Salamis Bay)。
由于古时多数人并不识字,最早的秘密书写的形式只用到纸笔或等同物品,随着识字率提高,就开始需要真正的密码学了。最古典的两个加密技巧是:
1、置换(Transposition cipher):将字母顺序重新排列,例如‘help me’变成‘ehpl em’。
2、替代(substitution cipher):有系统地将一组字母换成其他字母或符号,例如‘fly at once’变成‘gmz bu podf’(每个字母用下一个字母取代)。
扩展资料:
进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:
1、错乱——按照规定的图形和线路,改变明文字母或数码等的位置成为密文;
2、代替——用一个或多个代替表将明文字母或数码等代替为密文;
3、密本——用预先编定的字母或数字密码组,代替一定的词组单词等变明文为密文;
4、加乱——用有限元素组成的一串序列作为乱数,按规定的算法,同明文序列相结合变成密文。
以上四种密码体制,既可单独使用,也可混合使用 ,以编制出各种复杂度很高的实用密码。
参考资料来源:百度百科—密码学