简单的说就是你的数据(明文)通过一种算法+加密密钥(密文),然后传输给另一方,另一方收到后用同样的算法+解密密钥(等同你的加密密钥)将你的密文解密。目前用的算法:哈希,MD5,SHA等。
RSA加密是一种非对称加密。可以在不直接传递密钥的情况下,完成解密。这能够确保信息的安全性,避免了直接传递密钥所造成的被破解的风险。是由一对密钥来进行加解密的过程,分别称为公钥和私钥。两者之间有数学相关,该加密算法的原理就是对一极大整数做因数分解的困难性来保证安全性。通常个人保存私钥,公钥是公开的(可能同时多人持有)。
加密和签名都是为了安全性考虑,但略有不同。常有人问加密和签名是用私钥还是公钥?其实都是对加密和签名的作用有所混淆。简单的说,加密是为了防止信息被泄露,而签名是为了防止信息被篡改。这里举2个例子说明。
RSA的加密过程如下:
RSA签名的过程如下:
总结:公钥加密、私钥解密、私钥签名、公钥验签。
RSA加密对明文的长度有所限制,规定需加密的明文最大长度=密钥长度-11(单位是字节,即byte),所以在加密和解密的过程中需要分块进行。而密钥默认是1024位,即1024位/8位-11=128-11=117字节。所以默认加密前的明文最大长度117字节,解密密文最大长度为128字。那么为啥两者相差11字节呢?是因为RSA加密使用到了填充模式(padding),即内容不足117字节时会自动填满,用到填充模式自然会占用一定的字节,而且这部分字节也是参与加密的。
RSA是目前使用最为广泛的公钥密码算法,公钥加密也称为非对称加密,与对称加密的最大区别在于加密与解密使用不同的密钥。
在RSA中,明文、密文和密钥都是数字,假设公钥用二元组(E,N)来表示,私钥用(D,N)来表示,其中E、D、N都是数字,那么加解密过程可表示如下:
可见,在RSA中,不论加密还是解密,都可归结为求x的y次幂对m取余问题。
生成RSA密钥可分成以下4步:
首先准备两个很大的质数p和q,那么N = p * q。
L = lcm(p-1, q-1)
由于存在恒等式gcd(a,b) * lcm(a,b) = a * b,求lcm可转换为求gcd,而求gcd可通过欧几里德算法在对数时间内算出。
E是一个比1大、比L小的数,且满足E与L互质,即有:gcd(E,L)=1, 1 E L。gcd(E,L)=1是为了保证后面要求的数字D一定存在。
可不断地生成[2,L-1]之间的随机数作为E的候选数,检查是否满足条件,直到找出符合要求的E为止。
至此,E和N都已求出,那么公钥(E,N)也就得到了。
数D是由数E计算得到的,D、E和L之间满足关系:E * D mod L = 1, 1 D L。
只要D满足上述条件,那么通过E与N加密的内容,就可通过D和N进行解密。
求D也可采用类似求E的方法,不断产生随机数去试,直到找出满足条件的D为止,这样私钥(D,N)也准备好了。
为方面说明,这里用较小的数计算。先准备两个质数,例如,p=17, q=19,那么N=17*19=323,L=lcd(16,18)=144。
满足gcd(E,L)=1的数很多,例如5,7,11,13,25等,这里取E=5。
满足E*D mod L = 1的数也很多,这里取D=29。
到这里,公私钥都有了,公钥为(5,323),私钥为(29,323),公钥可任意公开,私钥则保密。
明文必须是小于N的数,因为加密运算中要求mod N。假设明文是123,用公钥(5,323)对其加密:
再用私钥(29,323)对密文225进行解密:
解出的明文与原始明文一致。
加密有两种方式:对称密钥加密和非对称密钥加密:
1. 对称密钥加密原理
在加密传输中最初是采用对称密钥方式,也就是加密和解密都用相同的密钥。
2. 非对称密钥加密原理 正因为对称密钥加密方法也不是很安全,于是想到了一种称之为“非对称密钥”加密(也称公钥加密)方法。所谓非对称密钥加密是指加密和解密用不同的密钥,其中一个称之为公钥,可以对外公开,通常用于数据加密,另一个相对称之为私钥,是不能对外公布的,通常用于数据解密。而且公/私钥必须成对使用,也就是用其中一个密钥加密的数据只能由与其配对的另一个密钥进行解密。这样用公钥加密的数据即使被人非法截取了,因为他没有与之配对的私钥(私钥仅发送方自己拥有),也不能对数据进行解密,确保了数据的安全。