1.
变形
b√(1-a^2)=1-a√(1-b^2)
两边平方
b^2(1-a^2)=1+a^2(1-b^2)-2a√(1-b^2)
即
1+a^2-b^2=2a√(1-b^2)
两边再平方
1+a^4+b^4+2a^2-2a^2b^2-2b^2=4a^2-4a^2b^2
即
a^4+b^4+2a^2b^2-2a^2-2b^2+1=0
也就是
(a^2+b^2-1)^2=0
显然a^2+b^2=1,得证
2.
由题意
a^(xy)=(a^x)^y=c^yz
b^(xy)=(b^y)^x=c^xz
两式相乘:
(ab)^xy=c^(yz+xz)=(ab)(yz+xz)
也就是
xy=yz+xz
即
z=xy/(x+y),得证
3
不等式左边把分母放大:
a/(a+b+c)a/(a+b+c+d)
b/(b+c+a)b/(a+b+c+d)
c/(c+d+b)c/(a+b+c+d)
d/(d+a+c)d/(a+b+c+d)
相加得证
右边把分母缩小:
a/(a+b+c)a/(a+b)
b/(b+c+a)b/(a+b)
c/(c+d+b)c/(c+d)
d/(d+a+c)d/(c+d)
相加得证
4.
任意找到两支足球队a,b,他们之间比赛过
那么a还跟a,b之外的17支足球队至少进行过12场比赛,b也是
两队跟a,b之外的足球队总共至少进行过24场比赛
a,b之外的足球队只有17支
根据抽屉原理,至少有24-17=7支球队跟a,b都比赛过
从这7支球队中任选一支球队c,c除了跟a,b之外的球队至少比赛过11场,由11(19-2-7)=10,根据抽屉原理,c至少跟7支球队中的某个球队d比赛过
那么a,b,c,d这四支球队就互相两两比赛过
得证
1.如果是A.B是两个不等的正整数,结果就是31。A.B可以相等就是两个答案,9和31。
2.
6只鸡1.5天生6个蛋。(1.5只鸡X4=6)
6只鸡1天生4个蛋。(6个蛋X3/2=4)
6只鸡8天生32个蛋。(8天X4=32个)
3.d-c=4
b-a=2
c-b=1
因为有个且d-2a=9。所以吧d-c=4代换成:
d-[1+(2+a)]=4 = d-a=7
可以解出a=-2,b=0.
4.把9袋都放秤上,看着显示器,往外一袋袋的拿。低位数的变化不一样。
5.不会
6.4^1003*5^2009
=4^1003*5^1003*5^1006
=(4*5)^1003*5^1006
=20^1003*5^1006
=(20*5)^1003*5^3
=100^1003*125
=125*10^2006
也就是说等于125后面添加2006个0
所以答案是2009个数字
7.公式为(n+1)*n/2+1
一只老虎发现离它10m远的地方有一个兔子,马上扑了过去,老虎跑7步的距离兔子要跑11步,但兔子的步子密,老虎跑3步的时间兔子能跑4步。问:老虎是否能追上兔子?如何追上,要跑多远的路?
(11×3):(7×4)=33:28. 老虎能追上兔子。
设老虎跑x米的路
x:(x-10)=33:28
解得x=66
答 :老虎跑66米追上兔子。
某市剧院举行文艺演出,价格是:一等席300元/人,二等席200元/人,三等席150元/人,某印务公司组织员工36人去观看,计划购买2种席票,共用去5850元,你能设计几种购票方案供印务公司选择?请说明理由
一等30,二等20,三等15,共用585元,两种席票,共36人
由上能看出,必须有三等15元的席票且人数为奇数,设有X人
其他的36-X人
方案1:15X+20(36-X)=585
X=27人,二等席票9人
方案2:15X+30(36-X)=585
X=33人,一等票3张
甲车长0.12千米,速度为60千米/时;乙车长0.13千米,两车同向而行,当乙车的车头追上甲车的车尾后,又经过3分钟乙车的车尾离开甲车头,求乙车的速度
乙车速度为X,
过3分钟甲车运行60*3/60=3千米
此时3分钟内乙车运行距离=3+0.12+0.13=3.25千米
乙车速度X=3.25/(3/60)=65千米/小时0|评论
检举|2013-01-31 22:00热心网友1.一个两位数,十位数字是x,各位数字是x-1,把十位数字与各位数字对调后,所得到的两位数是什么?
2.小小的妈妈带m元钱上街买菜,她买肉用去了二分之一,买蔬菜用去了剩下的三分之一,那么她还剩多少元?
相关答案:
第一题:11X-10
第二题:M-m/2-m/2/3=1/3M 元
如下图,第100行的第5个数是几?
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17........
答案是4955
由图的左边最外层1 2 4 7 11 16 得后面的数总是比前面的数大,
而且第2个比第1个大1....第3个比第4个大2....第4个比第3个大3..第5个比第第4个大4....第6个比第5个大5..........所以可以设左边最外层中第n个数为x 则x等于〔1加2加3加……加〈n—1〉〕.......所以第100行的第1个数为〔1加2加3加……加〈100—1〉〕等于4951
所以第100行第5个数为4955
一、计算1+3+5+7+…+1997+1999的值。
二、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
三、已知
1 2 3
--- + --- + --- = 0 ①
x y z
1 6 5
--- - --- - --- =0 ②
x y z
x y z
试求 --- + --- + --- 的值
y z x
四、在1,2,3,…,1998中的每一个数的前面任意添上一个“+”或“-”那么最后计算出来的结果是奇数还是偶数?
五、某校初中一年级举行数学竞赛,参加的认识是未参加人数的3倍,如果该年级减少6人,未参加的学生增加6人,那么参加与未参加人数之比是
2:1 求参加竞赛的与未参加竞赛的认识以及初中一年级的人数
答案:一题:
原式=(1+1999)*[(1999-1)/2+1]/2
=2000*1000 /2
=1000000
二题:
2x+|4-5x|+|1-3x|+4的值恒为常数,则
4-5X≥0,1-3X≤0
所以:1/3≤X≤4/5
原式=2X+4-5X+3X-1+4=7
三题:
由②得:1/X=6/Y+5/Z代入 ①得
8/Y+8/Z=0
所以:Y=-Z代入1/X=6/Y+5/Z得:
1/X=1/Y
所以:X=Y
X/Y+Y/Z+Z/X=1-1-1=-1
四题:
在1,2,3,…,1998中,共有999个奇数,999个偶数,
无论二个偶数间的加减,其结果都是偶数,所以只考虑奇数间的关系.
因为任意二个奇数间的加减,其结果都是偶数,
所以,最后都是一个奇数和一个偶数间的加减,
所以,最后计算出来的结果是奇数.
五题:
设:未参加竞赛的人数为X,则参加竞赛的人数为3X,全校总人数为4X
如果该年级减少6人,则总人数为4X-6
未参加的学生增加6人,则未参加的人数为X+6,
参加的人数为4X-6-(X+6)=3X-12
参加与未参加人数之比是2:1
所以:3X-12=2*(X+6)
解之得:X=24(人),参加竞赛的人数为3X=72人,全校总人数为4X=96人追问七年级奥数题 再难一点 多一点 25个 谢谢参考资料:用百度搜 初一数学奥数题
2006年全国初中数学竞赛试题参考答案
一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)
1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( ).
(A)36 (B)37 (C)55 (D)90
答:C.
解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施是在55千米处.
故选C.
2.已知 , ,且 ,则 的值等于( )
(A)-5 (B)5 (C)-9 (D)9
答:C.
解:由已知可得 , .又
,
所以 ,
解得 .
故选C.
3.Rt△ABC的三个顶点 , , 均在抛物线 上,并且斜边AB平行于x轴.若斜边上的高为 ,则( )
(A) (B) (C) (D)
答:B.
解:设点A的坐标为 ,点C的坐标为 ( ),则点B的坐标为 ,由勾股定理,得
,
,
,
所以 .
由于 ,所以 ,故斜边AB上高 .
故选B.
4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )
(A)2004 (B)2005 (C)2006 (D)2007
答:B.
解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过 次后,可得( +1)个多边形,这些多边形的内角和为( +1)×360°.
因为这( +1)个多边形中有34个六十二边形,它们的内角和为
34×(62-2)×180°=34×60×180°,
其余多边形有( +1)-34= -33(个),而这些多边形的内角和不少于( -33)×180°.所以
( +1)×360°≥34×60×180°+( -33)×180°,
解得 ≥2005.
当我们按如下的方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取出33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便得到33个六十二边形和33×58个三角形.于是共剪了
58+33+33×58=2005(刀).
故选B.
5.如图,正方形 内接于⊙ ,点 在劣弧 上,连结 , 交 于点 .若 ,则 的值为( )
(A) (B)
(C) (D)
答:D.
解:如图,设⊙ 的半径为 , ,则 , , .
在⊙ 中,根据相交弦定理,得 .
即 ,
所以 .
连结DO,由勾股定理,得
,
即 ,
解得 .
所以, .
故选D.
二、填空题(共5小题,每小题6分,满分30分)
6.已知 , , 为整数,且 + =2006, =2005.若 < ,则 + + 的最大值为 .
答:5013.
解:由 + =2006, =2005,得
+ + = +4011.
因为 + =2006, < , 为整数,所以, 的最大值为1002.
于是, + + 的最大值为5013.
7.如图,面积为 的正方形DEFG内接于面积为1的正三角形ABC,其中a,b,c是整数,且b不能被任何质数的平方整除,则 的值等于 .
答: .
解:设正方形DEFG的边长为x,正三角形ABC的边长为m,则 .由△ADG ∽ △ABC,可得
作者: 221.13.21.* 2006-5-3 12:29 回复此发言
--------------------------------------------------------------------------------
2 2006全国初中数学竞赛试题及答案(全)
,
解得 .于是
,
由题意,a=28,b=3,c=48,所以 .
8.正五边形广场ABCDE的周长为2000米.甲、乙两人分别从A,C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米∕分,乙的速度为46米∕分. 那么,出发后经过 分钟,甲、乙两人第一次开始行走在同一条边上.
答:104.
解:设甲走完x条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x米,乙走了 米.于是
,
且 ≤ ,
所以, ≤ < .
故x=13,此时 .
9.已知 ,且满足
( 表示不超过x的最大整数),则 的值等于 .
答:6.
解:因为 ,所以 , ,…, 等于0或者1.由题设知,其中有18个等于1,所以
= =…= =0,
= =…= =1,
所以 ,
≤ < .
故 ≤ < ,于是 ≤ < ,所以 6.
10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .
答:282500.
解:设原来电话号码的六位数为 ,则经过两次升位后电话号码的八位数为 .
根据题意,有81× = .
记 ,于是
,
解得 .
因为 ≤ ≤ ,所以
≤ < ,
故 < ≤ .
因为 为整数,所以 =2.于是
.
所以,小明家原来的电话号码为282500.
三、解答题(共4题,每小题15分,满分60分)
11(A).已知 , , 为互质的正整数,且 ≤ , .
(1)试写出一个满足条件的x;
(2)求所有满足条件的 .
解:(1) 满足条件. ……………………5分
(2)因为 , , 为互质的正整数,且 ≤ ,所以
,
即
.
当a=1时, ,这样的正整数b不存在.
当a=2时, ,故b=1,此时 .
当a=3时, ,故b=2,此时 .
当a=4时, ,与 互质的正整数b不存在.
当a=5时, ,故b=3,此时 .
当a=6时, ,与 互质的正整数b不存在.
当a=7时, ,故b=3,4,5,此时 , , .
当a=8时, ,故b=5,此时 .
所以,满足条件的所有分数为 , , , , , , .
…………………15分
12(A).设 , , 为互不相等的实数,且满足关系式
①
及 , ②
求 的取值范围.
解法1:由①-2×②得
,
所以 .
当 时,
.
…………………10分
又当 = 时,由①,②得
, ③
, ④
将④两边平方,结合③得
,
化简得
,
故 ,
解得 ,或 .
所以, 的取值范围为 且 , .
……………15分
解法2:因为 , ,所以
= = ,
所以 .
又 ,所以 , 为一元二次方程
⑤
的两个不相等实数根,故
,
所以 .
当 时,
.
…………………10分
另外,当 = 时,由⑤式有
,
即
,或 ,
解得 ,或 .
所以, 的取值范围为 且 , .
…………………15分
13(A).如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K. 求证: .
证明:因为AC‖PB,所以 .又PA是⊙O的切线,所以 .故 ,于是
△KPE∽△KAP,
所以 ,
作者: 221.13.21.* 2006-5-3 12:29 回复此发言
--------------------------------------------------------------------------------
3 2006全国初中数学竞赛试题及答案(全)
即 .
………………5分
由切割线定理得
,
所以, KP=KB.
…………………10分
因为AC‖PB,所以,△KPE∽△ACE,于是
,
故 ,
即 .
…………………15分
14(A).2006个都不等于119的正整数 排列成一行数,其中任意连续若干项之和都不等于119,求 的最小值.
解:首先证明命题:对于任意119个正整数 ,其中一定存在若干个(至少一个,也可以是全部)的和是119的倍数.
事实上,考虑如下119个正整数
, ,…, , ①
若①中有一个是119的倍数,则结论成立.
若①中没有一个是119的倍数,则它们除以119所得的余数只能为1,2,…,118这118种情况.所以,其中一定有两个除以119的余数相同,不妨设为 和 ( ≤ < ≤ ),于是
,
从而此命题得证.
…………………5分
对于 中的任意119个数,由上述结论可知,其中一定有若干个数的和是119的倍数,又由题设知,它不等于119,所以,它大于或等于2×119,又因为 ,所以
≥ . ②
…………………10分
取 ,其余的数都为1时,②式等号成立.
所以, 的最小值为3910.
…………………15分
11(B).已知△ 中, 是锐角.从顶点 向 边或其延长线作垂线,垂足为 ;从顶点 向 边或其延长线作垂线,垂足为 .当 和 均为正整数时,△ 是什么三角形?并证明你的结论.
解:设 , 均为正整数,则
,
所以,mn=1,2,3.
…………………5分
(1)当mn=1时, , ,此时 .所以 垂直平分 , 垂直平分 ,于是△ 是等边三角形.
(2)当mn=2时, , ,此时 ,或 ,所以点 与点 重合,或点 与点 重合.故 ,或 ,于是△ 是等腰直角三角形.
(3)mn=3时, , ,此时 ,或 .于是 垂直平分 ,或 垂直平分 .故 ,或 ,于是△ 是顶角为 的等腰三角形.
…………………15分
12(B).证明:存在无穷多对正整数 ,满足方程
.
证法1:原方程可以写为
,
于是
是完全平方数.
…………………5分
设 ,其中k是任意一个正整数,则 .
…………………10分
于是
,或 .
所以,存在无穷多对正整数 (其中k是正整数)满足题设方程.
…………………15分
证法2:原方程可写为
,
所以可设
(x是正整数), ①
取 . ②
…………………5分
① -②得
.
令 (y是任意正整数),则 .
…………………10分
于是
.
所以,存在无穷多对正整数 (其中y是任意正整数)满足题设方程.
…………………15分
13(B).如图,已知锐角△ABC及其外接圆⊙O,AM是BC边的中线.分别过点B,C作⊙O的切线,两条切线相交于点X,连结AX.求证: .
证明:设AX与⊙O相交于点 ,连结OB,OC, .又M为BC的中点,所以,连结OX,它过点M.
因为 ,所以
. ①
又由切割线定理得
. ②
…………………5分
由①,②得
,
于是
△XMA∽△ ,
所以
.
…………………10分
又 ,所以 ,于是
.
…………………15分
14(B).10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.证明:n的最小值为6.
证明:设10个学生为 ,n个课外小组为 .
首先,每个学生至少参加两个课外小组.否则,若有一个学生只参加一个课外小组,设这个学生为 ,由于每两个学生都至少在某一小组内出现过,所以其它9个学生都与他在同一组出现,于是这一组就有10个人了,矛盾.
…………………5分
若有一学生恰好参加两个课外小组,不妨设 恰好参加 ,由题设,对于这两组,至少有两个学生,他们没有参加这两组,于是他们与 没有同过组,矛盾.
所以,每一个学生至少参加三个课外小组.于是n个课外小组 的人数之和不小于 =30.
另一方面,每一课外小组的人数不超过5,所以n个课外小组 的人数不超过5n,故
≥ ,
所以 ≥ .
…………………10分
下面构造一个例子说明 是可以的.
, , ,
, , .
容易验证,这样的6个课外小组满足题设条件.
所以,n的最小值为6.
…………………15分
《初中数学竞赛自招资料 》百度网盘资源免费下载
链接:
?pwd=awxw 提取码: awxw
初中数学竞赛自招资料|上海自招|竞赛资料|海风讲义|供系统上传|第三批次|第二批次20170525|初中竞赛知识列表.xlsx|中位线及其应用.docx|质数、合数.docx|正弦定理与余弦定理.docx|整数几何.docx|整除.docx|圆的基本性质.docx|有趣的操作问题.docx